首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Fifty-two introgression lines (BC2F8) from crosses between two Oryza sativa parents and five accessions of O. officinalis were analyzed for the introgression of O. officinalis chromosome segments. DNA from the parents and introgression lines was analyzed with 177 RFLP markers located at approximately 10-cM intervals over the rice chromosomes. Most probe/enzyme combinations detected RFLPs between the parents. Of the 174 informative markers, 28 identified putative O. officinalis introgressed chromosome segments in 1 or more of the introgression lines. Introgressed segments were found on 11 of the 12 rice chromosomes. In most cases of introgression, O. sativa RFLP alleles were replaced by O. officinalis alleles. Introgressed segments were very small in size and similar in plants derived from early and later generations. Some nonconventional recombination mechanism may be involved in the transfer of such small chromosomal segments from O. officinalis chromosomes to those of O. sativa. Some of the introgressed segments show association with genes for brown planthopper (BPH) resistance in some introgressed lines, but not in others. Thus, none of the RFLP markers could be unambiguously associated with BPH resistance.  相似文献   

2.
 Complementary recessive genes hwd1 and hwd2 controlling hybrid breakdown (weakness of F2 and later generations) were mapped in rice using RFLP markers. These genes produce a plant that is shorter and has fewer tillers than normal plants when the two loci have only one or no dominant allele at both loci. A cultivar with two dominant alleles at the hwd1 locus and a cultivar with two dominant alleles at the hwd2 locus were crossed with a double recessive tester line. Linkage analysis was carried out for each gene independently in two F2 populations derived from these crosses. hwd1 was mapped on the distal region of rice genetic linkage map for chromosome 10, flanked by RFLP markers C701 and R2309 at a distance of 0.9 centiMorgans (cM) and 0.6 cM, respectively. hwd2 was mapped in the central region of rice genetic linkage map for chromosome 7, tightly linked with 4 RFLP markers without detectable recombination. The usefulness of RFLP mapping and map information for the genes controlling reproductive barriers are discussed in the context of breeding using diverse rice germplasm, especially gene introduction by marker-aided selection.  相似文献   

3.
Association of morphological and RFLP markers in rice (Oryza sativa L.).   总被引:1,自引:0,他引:1  
Seventeen morphological marker genes were associated with restriction fragment length polymorphism markers in rice by using four F2 populations, each segregating for a few observable traits, and 14 near isogenic lines (NILs), each containing one morphological mutant gene. The location of five genes was confirmed on the basis of F2 analysis: Purple hull (Pr) (16.8 +/- 7.9 cM away from RG163 on chromosome 4); Phenol staining (Ph) (20.8 +/- 8.4 cM away from RG163 on chromosome 4); glabrous leaf and hull (gl-1) (14.3 +/- 7.4 cM away from RG182, and 20.9 +/- 8.3 cM from RG403 on chromosome 5); Brown pericarp (Rc) (12.5 +/- 7.2 cM away from RG30 on chromosome 7); and lazy growth habit (la) (28.8 +/- 9.4 cM away from RG118 on chromosome 11). In addition, 12 other morphological markers, including the agronomically important genes semi-dwarf (sd-1) and Pollen restoring factor (Rf-1) were tentatively associated with mapped DNA clones based on screening pairs of NILs.  相似文献   

4.
Forty fourth single-copy RFLP markers were used to evaluate the genetic diversity of 122 accessions of common wild rice (CWR, Oryza rufipogon Griff.) and 75 entries of cultivated rice (Oryza sativa L. ) from more than ten Asian countries. A comparison of the parameters showing genetic diversity, including the percentage of polymorphic loci (P), the average number of alleles per locus (A), the number of genotypes (Ng), the average heterozygosity (Ho) and the average genetic multiplicity (Hs) of CWR and indica and japonica subspecies of cultivated rice from different countries and regions, indicated that CWR from China possesses the highest genetic diversity, followed by CWR from South Asia and Southeast Asia. The genetic diversity of CWR from India is the second highest. Although the average gene diversity (Hs)of the South Asian CWR is higher than that of the Southeast Asian CWR, its percentage of polymorphic loci (P), number of alleles (Na) and number of genotypes (Ng) are all smaller. It was also found that the genetic diversity of cultivated rice is obviously lower than that of CWR. At the 44 loci investigated, the number of polymorphic loci of cultivated rice is only 3/4 that of CWR, while the number of alleles, 60%, and the number of genotypes is about 1/2 that of CWR. Of the two subspecies studied, the genetic diversity of indica is higher than that of japonica. The average heterozygosity of the Chinese CWR is the highest among all the entries studied. The average heterozygosity of CWR is about two-times that of cultivated rice. It is suggested that during the course of evolution from wild rice to cultivated rice, many alleles were lost through natural and human selection, leading to the lower heterozygosity and genetic diversity of the cultivated rice. Received: 19 May 1999 / Accepted: 26 April 2000  相似文献   

5.
6.
The cytological sequence of senescence-related changes in coleoptiles of rice (Oryza sativa L. cv. Nippon-bare) was studied using fluorescence and electron microscopy. The coleoptiles reach full size 3 d after sowing, then rapidly senesce and wither completely by day 7. The interveinal region in cross-sections taken 1 mm from the tip of the coleoptile was selected for this analysis. Fluorescence microscopy using samples embedded in Technovit 7100 resin, electron microscopy and immunoelectron microscopy using DNA-specific antibodies were used to elucidate the sequence of senescence-related events. These occur in the following order: (i) degradation of the chloroplast DNA (cpDNA); (ii) condensation of the nucleus in conjunction with a decrease in the size of the dense-chromatin region, shrinkage of the chloroplast, degradation of ribulose-1, 5-bisphosphate carboxylase/oxygenase, dilation of the thylakoid membranes, increase in size and number of osmiophilic globules, condensation of the cytoplasm; (iii) disorganization of the nucleus, degeneration of the tonoplast; (iv) complete loss of the cytoplasmic components, distortion of the cell wall, invasion of microorganisms into the intercellular spaces and ultimately into the cell itself. The mitochondria maintain their ultrastructural integrity and a constant level of mitochondrial DNA throughout senescence. In young mesophyll cells, invagination of the tonoplast into the vacuole frequently occurs. This occasionally includes cytoplasmic material, which is digested in the vacuole as senescence proceeds. Immunoelectron microscopy suggests that cpDNA degradation involves rough digestion first, rather than rapid, direct decomposition of the DNA into nucleotides. The fragmented cpDNA is then dispersed throughout the chloroplast and cytoplasm. Received: 9 April 1998 / Accepted: 11 June 1998  相似文献   

7.
Genetic variation between samples of Oryza sativa from 19 localities in Bangladesh and Bhutan was assessed using two PCR-based molecular marker systems: RAPD (random amplification of polymorphic DNA) and ISSR-PCR (inter-simple sequence repeat polymerase chain reaction). Employing RAPD, a set of 14 decanucleotides of arbitrary sequence directed the amplification of 94 reproducible marker bands, 47 (50%) of which were polymorphic. In addition, a set of 9 ISSR primers were used to direct amplification of 71 PCR products, 40 (56%) of which were polymorphic. Multivariate analyses of the two PCR-based molecular marker data sets provided evidence that the patterns of variation correspond with the classification described by Glaszmann [9] using isozyme analysis. Subtle differences in the relationships revealed between rice groups using the two types of PCR-based marker led to investigations of their map positions using an intraspecific doubled haploid mapping population. The observation that the chromosomal locations of markers can influence diversity assessments is presented and the significance of this is discussed.  相似文献   

8.
水稻微卫星标记的发展和应用   总被引:4,自引:0,他引:4  
李文涛  张桂权 《生命科学》2000,12(5):234-236,220
微卫星又称简单序列重复。它是由几个核苷酸(一般2~4个)为重复单位组成的串联重复序列。相同座位上的重复序列由于重复次数的不同而造成序列长度的多态性。微卫星标记是一种共显性标记,具有等位基因丰富、检测技术简单等优点。微卫星标记在基因组作图、品种鉴定、种质保存、分子标记辅助选择等方面有着广泛的应用。目前水稻中已发展了300多个微卫星标记。  相似文献   

9.
Summary We obtained cybrid plants by electrofusing -irradiated protoplasts of a cytoplasmic male-sterile line A-58 CMS (Oryza sativa L.) and iodoacetamide (IOA)-treated protoplasts of the fertile (normal) rice cultivar Fujiminori. The cybridity of the plants was confirmed by mitochondrial (mt) DNA restriction endonuclease, and plasmid-like DNA analyses, and by isozyme, cytological and morphological investigations. The chromosome number of the cybrid plants is 24.  相似文献   

10.
Quantitative triat loci (QTLs) for yield and related traits in rice were mapped based on RFLP maps from two indica/indica F2 populations, Tesanai 2/CB and Waiyin 2/CB. In Tesanai 2/CB, 14 intervals carrying QTLs for eight traits were detected, including 3 for grain weight per plant (GWT), 2 for number of panicles per plant (NP), 2 for number of grains per panicle (NG), 1 for total number of spikelets per panicle (TNS), 1 for spikelet fertility (SF), 3 for 1000-grain weight (TGWT), 1 for spikelet density (SD), and 1 for number of first branches per main panicle. The 3 QTLs for GWT were located on chromosomes 1, 2, and 4, with 1 in each chromosome. The additive effect of the single locus ranged from 2.0 g to 9.1 g. A major gene (np4) for NP was detected on chromosome 4 within the interval of RG143–RG214, about 4cM for RG143, and this locus explained 26.1% of the observed phenotypic variance for NP. The paternal allele of this locus was responsible for reduced panicles per plant (3 panicles per plant). In another population, Waiyin 2/CB, 12 intervals containing QTLs for six of the above-mentioned traits were detected, including 3 for GWT, 2 for each of NP, TNS, TGWT and SD, 1 for SF. Three QTLs for GWT were located on chromosome 1, 4, and 5, respectively. The additive effect of the single locus for GWT ranged from 6.7 g to 8.8 g, while the dominance effect was 1.7–11.5 g. QTL mapping in two populations with a common male parent is compared and discussed.  相似文献   

11.
DNA microsatellites are ubiquitously present in eukaryotic genomes [30] and represent a vast source of highly informative markers [30, 33, 34, 2]. We describe in this article a (GGC)n microsatellite which is widely distributed in eukaryotic genomes. Using polymerase chain reaction (PCR) techniques and DNA sequencing, we demonstrated for the first time in plant species that a (GGC)n microsatellite locus is moderately polymorphic. Six alleles are present at this locus in rice and length polymorphisms are caused by variation in the number of tandem GGC repeats. By scoring a backcross mapping population, we were able to demonstrate that this locus is stably inherited and does not link to any known RFLP markers on the rice RFLP map. Our results suggest that DNA microsatellites should be useful in plants for construction of genetic linkage maps, extension of the existing genetic linkage maps, linkage analysis of disease and pest resistance genes, and the study of population genetics.  相似文献   

12.
Minisatellites, or DNA fingerprinting sequences, have been utilized in animal linkage studies for several years but have not been used as markers for plant genome mapping. In animal genome mapping they have resulted in limited success because they are evenly dispersed in some species but are often clustered near telomeric regions, as observed on human chromosomes. The purpose of the present study was to generate DNA fingerprints utilizing several rice-derived minisatellites containing different core sequences and numbers of repeat units, followed by assessing their potential for use as genetic markers when mapped to a rice recombinant inbred line (RIL) population. Sites of segregating minisatellite loci were mapped onto 11 of the 12 rice RIL linkage maps. The implications for the use of rice minisatellite core sequences as genetic markers on linkage maps in rice are discussed. Received: 1 March 1999 / Accepted: 22 June 1999  相似文献   

13.
Summary Studies conducted at the International Rice Research Institute (IRRI) during 1980 and 1981 have shown up to 73% heterosis, 59% heterobeltiosis and 34% standard heterosis for yield in rice. The latter was estimated in comparison to commercial varieties: IR36 and IR42 (yield 4–5 t/ha in wet season trials and 7–8 t/ha in dry season trials). Generally speaking, absolute yield was lower and extent of standard heterosis was higher in wet season than in dry season with some exception. Yields up to 5.9 t/ha (22% standard heterosis) in the wet season and 10.4 t/ha (34% standard heterosis) in the dry season were obtained. Most of the hybrids performed better in some season while some performed better in both seasons. Hybrids showed better lodging resistance although they were 5–10 cm taller. F1 hybrids had significant positive correlations with the parental traits viz., yield (r = 0.446), tillering (r = 0.746), height (r = 0.810) and flowering (r = 0.843). Selection of parents among elite breeding lines on the basis of their per se yield performance, diverse origin and resistance to insects and diseases should give heterotic combination. Yield advantage of hybrids was due primarily to increase in number of spikelets per unit area even though tiller number was reduced. Grain weight was either the same or slightly higher. High yielding hybrids also showed significant heterosis and heterobeltiosis for total dry matter and harvest index. For commercial utilization of heterosis in rice, effective male sterility and fertility restoration systems are available and up to 45% natural outcrossing on male sterile lines has been observed. Consequently, F1 rice hybrid have been successfully developed and used in China. Prospects of developing hybrid rice varieties elsewhere appear bright especially in countries that have organized seed production, certification and distribution programs and where hybrid seed can be produced at a reasonable cost.  相似文献   

14.
15.
16.
以生物素标记的水稻单拷贝光敏素基因(phyA) 和1 ,5二磷酸核酮糖羧化酶/ 加氧酶小亚基基因(rbcS) 的基因组克隆为探针,其大小分别为6 .6 和1 .1 kb ,通过原位杂交技术将它们分别定位到水稻染色体上。phyA 和rbcS基因的检出率分别为29 .79 % 和21 .56 % 。phyA在第3 染色体上有3 个座位:长臂近着丝粒、短臂末端、长臂中部。rbcS分别定位于第7 染色体长臂近着丝粒(8 .62 % ) 、第5 染色体长臂末端、第6 染色体长臂距着丝粒近2/3 处。此外,对信号转导相关基因定位的意义,水稻染色体的准确识别、功能基因在染色体上的分布及位置意义等也进行了讨论。  相似文献   

17.
 A molecular map of rice consisting of 231 amplified fragment length polymorphisms (AFLPs), 212 restriction fragment length polymorphisms (RFLPs), 86 simple-sequence length polymorphisms (SSLPs), five isozyme loci, and two morphological mutant loci [phenol staining of grain (Ph), semi-dwarf habit (sd-1)] has been constructed using an F11 recombinant inbred (RI) population. The mapping population consisted of 164 RI lines and was developed via single-seed descent from an intercross between the genetically divergent parents Milyang 23 (M) (tongil type) and Gihobyeo (G) ( japonica type). A subset of previously mapped RFLP and SSLP markers were used to construct the map framework. The AFLP markers were derived from ten EcoRI(+2) and MseI(+3) primer combinations. All marker types were well distributed throughout the 12 chromosomes. The integrated map covered 1814 cM, with an average interval size of 3.4 cM. The MG map is a cornerstone of the Korean Rice Genome Research Program (KRGRP) and is being continuously refined through the addition of partially sequenced cDNA markers derived from an immature-seed cDNA library developed in Korea, and microsatellite markers developed at Cornell. The population is also being used for quantitative trait locus (QTL) analysis and as the basis for marker-assisted variety development. Received: 24 June 1997 / Accepted: 25 November 1997  相似文献   

18.
The vacuolar H+-pyrophosphatase (V-PPase) is an electrogenic H+ pump, which was found in the plant vacuolar membrane. Two cDNA clones (OVP1 and OVP2) encoding the V-PPase were isolated from cultured rice (Oryza sativa L.) cells and subsequently sequenced. The sequence analysis has revealed thatOVP1 contains 2316 nucleotides of open reading frame (ORF) and 362 nucleotides of the 3-untranslated region, whereasOVP2 comprises 2304 nucleotides of ORF and 312 nucleotides of the 3-untranslated region. The nucleotide sequences of ORF ofOVP1 andOVP2 are 80.7% identical, and their 5- and 3-untranslated regions have 39.4% and 48.4% identity, respectively. The polypeptides encoded by the ORF ofOVP1 andOVP2 contain 771 and 767 amino acids, respectively, and the sequences of the OVP proteins are very similar to those of other V-PPases, which are shown to have 85–91% homology. Chromosomal mapping by RFLP techniques demonstrates that OVP1 and OVP2 are isoforms encoded by different genes. BothOVP1 andOVP2 are mapped on the same chromosome (chromosome 6) to a distance of ca. 90 cM. Northern analysis indicates that theOVP1 andOVP2 are also expressed in intact rice plants andOVP2 shows higher expression in the calli than the roots and shoots, compared toOVP1. These results show that at least two genes encoding the V-PPases are present in rice genome and their expressions are probably regulated in a different manner.  相似文献   

19.
The extent of linkage disequilibrium in rice (Oryza sativa L.)   总被引:1,自引:0,他引:1       下载免费PDF全文
Despite its status as one of the world's major crops, linkage disequilibrium (LD) patterns have not been systematically characterized across the genome of Asian rice (Oryza sativa). Such information is critical to fully exploit the genome sequence for mapping complex traits using association techniques. Here we characterize LD in five 500-kb regions of the rice genome in three major cultivated rice varieties (indica, tropical japonica, and temperate japonica) and in the wild ancestor of Asian rice, Oryza rufipogon. Using unlinked SNPs to determine the amount of background linkage disequilibrium in each population, we find that the extent of LD is greatest in temperate japonica (probably >500 kb), followed by tropical japonica (approximately 150 kb) and indica (approximately 75 kb). LD extends over a shorter distance in O. rufipogon (<40 kb) than in any of the O. sativa groups assayed here. The differences in the extent of LD among these groups are consistent with differences in outcrossing and recombination rate estimates. As well as heterogeneity between groups, our results suggest variation in LD patterns among genomic regions. We demonstrate the feasibility of genomewide association mapping in cultivated Asian rice using a modest number of SNPs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号