首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Complex chromosome rearrangements (CCRs) are extremely rare but often associated with mental retardation, congenital anomalies, or recurrent spontaneous abortions. We report a de novo apparently balanced CCR involving chromosomes 3 and 12 and a two-way translocation between chromosomes 11 and 21 in a woman with mild intellectual disability, obesity, coarse facies, and apparent synophrys without other distinctive dysmorphia or congenital anomalies. Molecular analysis of breakpoints using fluorescence in situ hybridization (FISH) with region-specific BAC clones revealed a more complex character for the CCR. The rearrangement is a result of nine breaks and involves reciprocal translocation of terminal chromosome fragments 3p24.1→pter and 12q23.1→qter, insertion of four fragments of the long arm of chromosome 12: q14.1→q21?, q21?→q22, q22→q23.1, and q23.1→q23.1 and a region 3p22.3→p24.1 into chromosome 3q26.31. In addition, we detected a ~0.5-Mb submicroscopic deletion at 3q26.31. The deletion involves the chromosome region that has been previously associated with Cornelia de Lange syndrome (CdLS) in which a novel gene NAALADL2 has been mapped recently. Other potential genes responsible for intellectual deficiency disrupted as a result of patient’s chromosomal rearrangement map at 12q14.1 (TAFA2), 12q23.1 (METAP2), and 11p14.1 (BDNF).  相似文献   

2.
There is an assumption of parsimony with regard to the number of chromosomes involved in rearrangements and to the number of breaks within those chromosomes. Highly complex chromosome rearrangements are thought to be relatively rare, with the risk for phenotypic abnormalities increasing as the number of chromosomes and chromosomal breaks involved in the rearrangement increases. We report here five cases of de novo complex chromosome rearrangements, each with a minimum of four breaks. Deletions were found in four cases, and in at least one case, a number of genes or potential genes might have been disrupted. This study highlights the importance of the detailed delineation of complex rearrangements, beginning with high-resolution chromosome analysis, and emphasizes the utility of fluorescence in situ hybridization in combination with the data available from the Human Genome Project as a means to delineate such rearrangements.Electronic database information: URLs for the data in this article are as follows:  相似文献   

3.
Complex chromosome rearrangements (CCR) involving multiple breaks in two or more chromosomes are rare. We describe a girl with development delay and overgrowth who presents a nine-break apparently balanced de novo rearrangement involving chromosomes 1, 2, 3, 4 and 12, and a boy with developmental delay and seizures with a complex three-chromosome apparently balanced de novo rearrangement involving chromosomes 2, 7 and 13. The relationship between clinical abnormalities and apparently balanced rearrangements is discussed.  相似文献   

4.
Summary We report on 50 couples with reproductive loss who did not have any detectable chromosome abnormality. A history of a previous child with multiple congenital abnormalities may be significant in identifying couples with a structural rearrangement. Only by studying more families can this hypothesis be tested. Studies of abortus tissue reveal a high percentage of chromosome abnormalities but a very low incidence of unbalanced translocations. Cytogenetic studies are indicated in a couple which has a past history of spontaneous abortions and a previous child with multiple congenital anomalies.  相似文献   

5.
Chromosome inversions are intra-chromosomal rearrangements formed when the chromosome breaks occur at two places, and in the process of repair the intervening segments are joined in an inverted or opposite manner. Inversions themselves do not appear to cause clinical anomalies, if balanced. Abnormal phenotypes can occur due to gene disruption at the point of breakage and reunion or due to duplication/deficiency recombinants formed during crossover at meiosis. We report a case with familial deletion 4q syndrome in a 1-year-old female child with dysmorphism and congenital abnormalities. The deletion was an outcome of a paracentric inversion 4q31.2q35.2. The deletion was confirmed by fluorescence in situ hybridization using telomeric DNA probes for chromosome No. 4. An attempt was made to correlate the genotype with the phenotype. The father had the same rearrangement with a milder phenotype. The recurrence risk in such cases is high.  相似文献   

6.
Balanced complex chromosome rearrangements (CCR) are extremely rare in humans. They are usually ascertained either by abnormal phenotype or reproductive failure in carriers. These abnormalities are attributed to disruption of genes at the breakpoints, position effect or cryptic imbalances in the genome. However, little is known about possible imbalances at the junction points. We report here a patient with a CCR involving three chromosomes (2;10;11) and eight breakpoints. The patient presented with behavioural problems as the sole phenotypic abnormality. The rearrangement, which is apparently balanced in G-banding and multicolour FISH, was shown by genomic array analysis to include a deletion of 0.15–1.5 Mb associated with one of the breakpoints. To explain the formation of this rearrangement through the smallest possible number of breakage-and-reunion events, one has to assume that the breaks have not occurred simultaneously, but in a temporal order within the span of a single cell division. We demonstrate that array comparative genomic hybridisation (CGH) is a useful complementary tool to cytogenetic analysis for detecting and mapping cryptic imbalances associated with chromosome rearrangement.  相似文献   

7.
Summary A de novo and apparently balanced complex chromosome rearrangement (CCR) was found in monozygotic (MZ) twin infants with multiple congenital anomalies. The rearrangement involved 4 chromosomes with 6 breakpoints including 2p23, 2q13, 2q21.1, 3p23, 11q13.1, and 12q24.1. This seems to be the first report of a CCR in MZ twins. The relationship between this chromosome abnormality and MZ twinning is discussed.  相似文献   

8.
Repetitive DNA sequences constitute 30% of the human genome, and are often sites of genomic rearrangement. Recently, it has been found that several constitutional translocations, especially those that involve chromosome 22, take place utilizing palindromic sequences on 22q11 and on the partner chromosome. Analysis of translocation junction fragments shows that the breakpoints of such palindrome-mediated translocations are localized at the center of palindromic AT-rich repeats (PATRRs). The presence of PATRRs at the breakpoints indicates a palindrome-mediated mechanism involved in the generation of these constitutional translocations. Identification of these PATRR-mediated translocations suggests a universal pathway for gross chromosomal rearrangement in the human genome. De novo occurrences of PATRR-mediated translocations can be detected by PCR in normal sperm samples but not somatic cells. Polymorphisms of various PATRRs influence their propensity for adopting a secondary structure, which in turn affects de novo translocation frequency. We propose that the PATRRs form an unstable secondary structure, which leads to double-strand breaks at the center of the PATRR. The double-strand breaks appear to be followed by a non-homologous end-joining repair pathway, ultimately leading to the translocations. This review considers recent findings concerning the mechanism of meiosis-specific, PATRR-mediated translocations.  相似文献   

9.
The Rubinstein-Taybi syndrome (RTS) is a well-defined complex of congenital malformations characterized by facial abnormalities, broad thumbs and big toes, and mental retardation. The breakpoint of two distinct reciprocal translocations occurring in patients with a clinical diagnosis of RTS was located to the same interval on chromosome 16, between the cosmids N2 and RT1, in band 16p13.3. By using two-color fluorescence in situ hybridization, the signal from RT1 was found to be missing from one chromosome 16 in 6 of 24 patients with RTS. The parents of five of these patients did not show a deletion of RT1, indicating a de novo rearrangement. RTS is caused by submicroscopic interstitial deletions within 16pl3.3 in approximately 25% of the patients. The detection of microdeletions will allow the objective confirmation of the clinical diagnosis in new patients and provides an excellent tool for the isolation of the gene causally related to the syndrome.  相似文献   

10.
Constitutional Complex Chromosomal Rearrangements (CCRs) are very rare. While the vast majority of CCRs involve more than one chromosome, only seven cases describe CCRs with four or more breakpoints within a single chromosome. Here, we present a patient with multiple congenital anomalies and mental retardation. Array Comparative Genomic Hybridisation (array CGH), FISH and Multicolour Banding FISH revealed a de novo complex rearrangement with two deletions, a duplication and an inversion of 4q. This CCR involving at least seven breakpoints is one of the most complex rearrangements of a single chromosome reported thus far. Potential mechanisms generating such complex rearrangements are discussed.  相似文献   

11.
The presence of DNA double-strand breaks during mitosis is particularly challenging for the cell, as it produces broken chromosomes lacking a centromere. This situation can cause genomic instability resulting from improper segregation of the broken fragments into daughter cells. We recently uncovered a process by which broken chromosomes are faithfully transmitted via the BubR1-dependent tethering of the two broken chromosome ends. However, the mechanisms underlying BubR1 recruitment and function on broken chromosomes were largely unknown. We show that BubR1 requires interaction with Bub3 to localize on the broken chromosome fragments and to mediate their proper segregation. We also find that Cdc20, a cofactor of the E3 ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C), accumulates on DNA breaks in a BubR1 KEN box–dependent manner. A biosensor for APC/C activity demonstrates a BubR1-dependent local inhibition of APC/C around the segregating broken chromosome. We therefore propose that the Bub3–BubR1 complex on broken DNA inhibits the APC/C locally via the sequestration of Cdc20, thus promoting proper transmission of broken chromosomes.  相似文献   

12.
13.
14.
LSD was found to induce chromosomal aberrations in root tip cells of Allium cepa, Hordeum vulgare and Secale cereale. Aberrations occurred in the form of chromatid and isochromatid breaks with most of these breaks failing to rejoin. The distribution of chromosome breaks was not uniform over the length of chromosomes, and a majority of the breaks were localized at the centromeric regions. For a given dose of LSD (30 g/ml), onion appeared to be more susceptible than barley or rye. The diploid and tetraploid rye used in the study showed no appreciable difference in sensitivity to LSD treatment. — A preliminary study on meiotic chromosomes in LSD-treated diploid rye revealed the presence of univalents, chromosome breaks and fragments, suggesting that LSD can induce meiotic abnormalities in plant material.Contribution from the Department of Agronomy, University of Kentucky. The investigation reported in this paper (73-3-75) is in connection with a project of the Kentucky Agricultural Experiment Station and is published with the approval of the Director.  相似文献   

15.
The presence of derivative chromosome in a child with phenotypic features necessitates the need of parental karyotyping to ascertain the exact amount of loss or gain of the genetic material. The aim of this study was to emphasize the importance of parental karyotyping. Cytogenetic evaluation of the proband and his father were carried out at Laboratory. Cytogenetic analysis was performed on phytohemagglutinin stimulated cultures. The derivative chromosome 11 in proband was ascertained to have additional material from chromosome 6p arising from complex chromosomal rearrangement in the father. Karyotyping is the basic, cost-effective preliminary investigation in a child with mental subnormality or congenital anomalies.  相似文献   

16.
This report describes a complex structural rearrangement between chromosomes X and 1 and a 7;13 translocation (together involving six break points) in a child with multiple congenital defects. Both parents showed a normal chromosome complement, suggesting that the changes may have originated either in a gametic nucleus or at a very early stage of zygotic development.  相似文献   

17.
Using a human lymphoblastoid cell line WTK-1, we applied multicolor fluorescence in situ hybridization (mFISH) technique to analyze mitomycin C (MMC)-induced chromatid exchanges, focusing especially on the triradial chromosomes. It was found that the triradial chromosomes were formed with a specific rearrangement, "recipient and donor" relationship. The exchange sites of the recipient chromosomes were on single chromatid breaks and distributed randomly throughout the interstitial, pericentromeric, and terminal regions. In counterpart, donor chromosomes exchanged on isochromatid breaks of their telomeric and/or subtelomeric regions with the single chromatid breaks of recipient chromosomes. More than 80% of the scored triradial chromosomes were formed with such rearrangements, and few acentric chromosome fragments derived from the donor chromosomes could be detected in the metaphases observed. We therefore suggest that biological mechanisms of breakages between the recipient and donor chromosomes are different: the former due to direct DNA-damage by MMC, but the latter due to indirect DNA-damage depending on telomeric specific structure/function.  相似文献   

18.
Robertsonian translocations (ROBs) have an estimated incidence rate of 1/1000 births, making this type of rearrangement the most common structural chromosomal abnormalities seen in the general population. In this study, we reports 872 cases of ROBs from 205,001 specimens karyotyped postnatally in a single accredited laboratory in China, including 583 balanced ROBs, 264 unbalanced ROBs, 9 mosaic ROBs, and 18 complex ROBs. Ninety-three percent of the balanced ROBs observed were adults with infertility, miscarriage, or offspring(s) with known chromosomal abnormalities. Significant excess of females were found to be carriers of balanced ROBs with an adjusted male/female ratio of 0.77. Ninety-eight percent of the unbalanced ROBs observed were children with variable referral reasons. Almost all of the unbalanced ROBs involved chromosome 21 except a single ROB with [46,XX,der(13;14),+13] identified in a newborn girl with multiple congenital anomalies. Multiple novel ROB karyotypes were reported in this report. This study represents the largest collections of ROBs in Chinese population.  相似文献   

19.
Obesity in humans is a complex polygenic trait with high inter-individual heritability estimated at 40-70%. Candidate gene, DNA linkage and genome-wide association studies (GWAS) have allowed for the identification of a large set of genes and genomic regions associated with obesity. Structural chromosome abnormalities usually result in congenital anomalies, growth retardation and developmental delay. Occasionally, they are associated with hyperphagia and obesity rather than growth delay. We report four new individuals with structural chromosome abnormalities involving 10q22.3-23.2, 16p11.2 and Xq27.1-q28 chromosomal regions with early childhood obesity and developmental delay. We also searched and summarized the literature for structural chromosome abnormalities reported in association with childhood obesity.  相似文献   

20.
GC1代换系与小麦杂交减数分裂行为的研究   总被引:1,自引:1,他引:0  
用来自拟斯卑尔脱山羊草(Ae.speltoides)的杀配子染色体2S(GC基因),诱导普通小麦(Triticum aestivum L.)“宁农”、普通小麦—黑麦(Secale cereale L.)二体代换系(5R/5A)的染色体断裂,观察杂种F1的减数分裂行为,在减数分裂中期I和中期II均出现较高频率的单价体、多价体,后期I和后期II出现大量的落后染色体、染色体断片和桥等异常现象,在二分孢子和四分孢子中出现较多的微核。在本实验中,GC1代换系与5R/5A代换系杂交F1代减数分裂行为比GC1代换系与普通小麦“宁农”杂交F1代减数分裂行为复杂,经统计学分析,含杀配子染色体的代换系间杂交比单一的杀配子染色体作用对单价体、多价体、微核的产生具有显著差异。因此,利用带有杀配子染色体的代换系间杂交来诱导染色体易位是一条有效的途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号