首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The freshwater fish assemblage in most estuaries is not as species rich as the marine assemblage in the same systems. Coupled with this differential richness is an apparent inability by most freshwater fish species to penetrate estuarine zones that are mesohaline (salinity: 5·0–17·9), polyhaline (salinity: 18·0–29·9) or euhaline (salinity: 30·0–39·9). The reason why mesohaline waters are avoided by most freshwater fishes is difficult to explain from a physiological perspective as many of these species would be isosmotic within this salinity range. Perhaps, a key to the poor penetration of estuarine waters by freshwater taxa is an inability to develop chloride cells in gill filament epithelia, as well as a lack of other osmoregulatory adaptations present in euryhaline fishes. Only a few freshwater fish species, especially some of those belonging to the family Cichlidae, have become fully euryhaline and have successfully occupied a wide range of estuaries, sometimes even dominating in hyperhaline systems (salinity 40+). Indeed, this review found that there are few fish species that can be termed holohaline (i.e. capable of occupying waters with a salinity range of 0–100+) and, of these taxa, there is a disproportionally high number of freshwater species (e.g. Cyprinodon variegatus, Oreochromis mossambicus and Sarotherodon melanotheron). Factors such as increased competition for food and higher predation rates by piscivorous fishes and birds may also play an important role in the low species richness and abundance of freshwater taxa in estuaries. Added to this is the relatively low species richness of freshwater fishes in river catchments when compared with the normally higher diversity of marine fish species for potential estuarine colonization from the adjacent coastal waters. The almost complete absence of freshwater fish larvae from the estuarine ichthyoplankton further reinforces the poor representation of this guild within these systems. An explanation as to why more freshwater fish species have not become euryhaline and occupied a wide range of estuaries similar to their marine counterparts is probably due to a combination of the above described factors, with physiological restrictions pertaining to limited salinity tolerances probably playing the most important role.  相似文献   

2.
The intertidal benthic macrofauna of the Schelde estuary (The Netherlands and Belgium) was sampled in late autumn of 1990 at 50 stations along the whole salinity gradient (between Vlissingen and Dendermonde), including the freshwater tidal part. All stations were situated in sheltered areas with a relatively muddy sediment. Species richness, diversity and total biomass of the benthic macrofauna decreased along the salinity gradient from Vlissingen to Dendermonde, while total density showed no clear trend. Especially the oligohaline and freshwater tidal part of the Schelde estuary was characterized by a very impoverished benthic community, composed only of Oligochaeta. No other species (freshwater, marine or brackish) was observed in this part of the estuary. The marine part had a more diverse macrozoobenthos structure than that of the brackish part. Species found only in the marine zone areCerastoderma edule, Tharyx marioni, Eteone longa, Nephtys hombergii andCapitella capitata. In the brackish part of the estuary,Corophium volutator was a typical, dominant species. However, a lot of the dominant species were common in both the marine and brackish part of the Schelde estuary (e.g. Heteromastus filiformis, Pygospio elegans, Nereis diversicolor, Macoma balthica). The observed gradient in species composition and dominance is compared with some other European estuaries. The marine and brackish part of the Schelde estuary is quite similar to other european estuaries. The freshwater tidal part, however, was more impoverished.  相似文献   

3.
Experimental studies revealed that a freshwater ectoparasitic flagellate Ichthyobodo necator (Henneguy, 1883) could survive and reproduce in seawater after infected chum salmon fry, Oncorhynchus keta (Walbaum), were transferred directly from fresh water to 33% seawater. Minor morphological changes (slight reduction in body width, loss of twistlike wrinkles on body surface, and reduction in contractile vacuoles) were observed in the attached form of I. necator following transfer to seawater. The field survey also confirmed that I. necator occurs on chum salmon fry in seawater estuaries (salinity 17-34%) and in freshwater habitats. It was assumed that I. necator acquired salinity tolerance as a result of adapting to the migratory behavior of its anadromous host. Two morphologically similar bodonids, I. necator from chum salmon and Ichthyobodo sp. from marine Japanese flounder, Paralichthys olivaceus (Temminck and Schlegel), were differentiated by cross-infection experiments. Thus, the parasite from marine flounder should be regarded as a separate species from I. necator.  相似文献   

4.
Teske  Peter R.  Wooldridge  Tris 《Hydrobiologia》2001,464(1-3):227-243
Thirteen estuaries in the Eastern Cape Province, South Africa, were broadly categorised according to size and salinity distribution and were assigned to one of the following categories: permanently open estuaries having a strong salinity gradient between mouth and upper estuary, freshwater-deprived permanently open estuaries, medium-sized temporarily open/closed estuaries, and small, temporarily open/closed estuaries. The macrobenthos collected during surveys was then compared in terms of the following parameters: species composition, salinity, sediment mud content, density of macrobenthic animals, Hill's N0 (species richness), and Hill's N1 (diversity). Mud content was found to be the most important environmental variable responsible for biotic patterns found, and sites were consequently assigned to either a sand zone fauna, or a mud zone fauna. Both types of fauna are present in all estuaries sampled, with upper sites of river dominated estuaries having an additional oligohaline fauna, and freshwater-deprived estuaries providing habitat for many marine species. Small, temporarily open/closed estuaries have the highest macrobenthic density, whereas N0 and N1 are highest in freshwater-deprived permanently open systems. River-dominated permanently open estuaries tend to have lower macrobenthic densities, species richness, and diversities compared to estuaries in the other categories. No seasonal differences in these ecological indices were found within any of the estuarine categories.  相似文献   

5.
The fish biodiversity of Lake Nokoué, a lagoon in Bénin, was monitored for one year from August 2000 to July 2001 by means of samples from the artisanal fishery collected once a month at three stations. A total of 5 933 fish weighing 95 322g (mean individual weight 16.0g) belonging to 51 species, 47 genera and 34 families were sampled. An abundance of juveniles was observed, confirming the importance of the lake as nursery grounds, rich in exploitable habitats like other tropical estuaries and lagoons. The fish fauna comprised three main components: i) an estuarine component (strict, freshwater and marine origins) which is the basis of the lagoon fauna community and which is stable in space and time; ii) a marine component containing fishes which appeared in the lagoon during the dry season where the salinity remains high (>20‰) and iii) a freshwater component with fishes coming into the lagoon from the river during the flood period. The magnitude of the spatial and seasonal fluctuations of the last two components varies depending on the area: marine (Zogbo), freshwater (Vêki) or intermediate (Ganvié). The global species richness and the relative abundances of fish vary between stations and from month to month. November, with 20 species on average, and January, with 6 species on average, are significantly different as regards species richness.  相似文献   

6.
Salinity is one of the most important drivers of the distribution, abundance and diversity of organisms. Previous studies on the evolution of saline tolerance have been mainly centred on marine and terrestrial organisms, while lineages inhabiting inland waters remain largely unexplored. This is despite the fact that these systems include a much broader range of salinities, going from freshwater to more than six times the salinity of the sea (i.e. >200 g/L). Here, we study the pattern and timing of the evolution of the tolerance to salinity in an inland aquatic lineage of water beetles (Enochrus species of the subgenus Lumetus, family Hydrophilidae), with the general aim of understanding the mechanisms by which it was achieved. Using a time‐calibrated phylogeny built from five mitochondrial and two nuclear genes and information about the salinity tolerance and geographical distribution of the species, we found that salinity tolerance appeared multiple times associated with periods of global aridification. We found evidence of some accelerated transitions from freshwater directly to high salinities, as reconstructed with extant lineages. This, together with the strong positive correlation found between salinity tolerance and aridity of the habitats in which species are found, suggests that tolerance to salinity may be based on a co‐opted mechanism developed originally for drought resistance.  相似文献   

7.
The tidal freshwater reaches of estuaries have received little attention in ecological research although they are often heavily stressed by environmental impacts. We have thus compiled published and previously unpublished data from the Weser Estuary, Germany. Physical, chemical and biological properties are described within the tidal freshwater reach and compared with the upstream (riverine) and downstream (mixohaline) habitats. The tidal freshwater region is different from riverine sites, mainly due to tidally induced physical processes such as prolonged residence time of the water, oscillating water levels and changing current velocities and directions. Distinctions from the mixohaline situation are mainly due to differences in salinity and particulate suspended matter concentration. It is thus possible to define the tidal freshwater reach of the Weser Estuary as a separate biotope with a specific community structure. The phyto- and zooplankton is a mixture of riverine and autochthonous species whereas marine species are almost completely lacking. In the macroinvertebrate component, as well as in the fish community, marine and riverine species are combined with autochthonous species. This is probably typical for the tidal freshwater reaches of many river dominated coastal plain estuaries. We conclude that the tidal freshwater reaches are an important site of physical, chemical and biological processes which may alter riverine input considerably before it reaches the freshwater-seawater interface. For a better understanding of the ecological functioning of estuaries, it is essential to include these areas within estuarine research programmes.  相似文献   

8.
Estuaries are dynamic environments at the land–sea interface that are strongly affected by interannual climate variability. Ocean–atmosphere processes propagate into estuaries from the sea, and atmospheric processes over land propagate into estuaries from watersheds. We examined the effects of these two separate climate‐driven processes on pelagic and demersal fish community structure along the salinity gradient in the San Francisco Estuary, California, USA. A 33‐year data set (1980–2012) on pelagic and demersal fishes spanning the freshwater to marine regions of the estuary suggested the existence of five estuarine salinity fish guilds: limnetic (salinity = 0–1), oligohaline (salinity = 1–12), mesohaline (salinity = 6–19), polyhaline (salinity = 19–28), and euhaline (salinity = 29–32). Climatic effects propagating from the adjacent Pacific Ocean, indexed by the North Pacific Gyre Oscillation (NPGO), affected demersal and pelagic fish community structure in the euhaline and polyhaline guilds. Climatic effects propagating over land, indexed as freshwater outflow from the watershed (OUT), affected demersal and pelagic fish community structure in the oligohaline, mesohaline, polyhaline, and euhaline guilds. The effects of OUT propagated further down the estuary salinity gradient than the effects of NPGO that propagated up the estuary salinity gradient, exemplifying the role of variable freshwater outflow as an important driver of biotic communities in river‐dominated estuaries. These results illustrate how unique sources of climate variability interact to drive biotic communities and, therefore, that climate change is likely to be an important driver in shaping the future trajectory of biotic communities in estuaries and other transitional habitats.  相似文献   

9.
The diversity of centrohelids in inland saline waters was studied with metabarcoding for the first time. The fragment of V6–V7 regions of 18S rDNA was sequenced with newly designed primers. Obtained OTUs were identified with molecular phylogenetic analysis and comparison of the signatures in 39es9 hairpin of V7. The obtained data included some OTUs, which could be attributed to four described species, but the majority belonged to previously established or novel environmental clades. Along with some presumably marine/brackish clades and freshwater/low salinity (0–2 ppt) clades, seven presumable species demonstrating broad (from 1–2 up to 78 ppt) salinity tolerance were detected. A number of OTUs belonged to Raphidocystis contractilis, which is known from three independent findings in brackish habitats only. Thus, it was assumed that this species is stenohaline and specifically adapted to salinity 5–15 ppt. The high level of salinity tolerance was suggested for centrohelids before based on morphology, which was used to justify their cosmopolitan distribution. Later these views were criticized based on environmental sequencing, but the results of the current survey indicate, that at least some species are present at salinities from almost freshwater (1–2 ppt) to twice oceanic (78 ppt) and are presumably capable of overcoming oceanic salinity barriers for their distribution.  相似文献   

10.
Zonation of intertidal macrobenthos in the estuaries of Schelde and Ems   总被引:5,自引:0,他引:5  
Based on data, collected in 1980–1990, the intertidal benthic macrofauna of the Schelde and Ems estuaries was compared. The spatial occurrence of the benthic macrofauna along the salinity gradient, including the freshwater tidal area was emphasized. Both estuaries appeared to have a very similar species composition, especially at genus level. The higher number of species observed in the Schelde estuary was probably due to a greater habitat diversity. In both estuaries species diversity decreased with distance upstream. The total density did not vary along the estuarine gradient, whereas biomass is highest in the polyhaline zone.In both estuaries distinct intertidal benthic communities were observed along the salinity gradient: a marine community in the polyhaline zone, a brackish community in the mesohaline zone, and a third community in the oligohaline and freshwater tidal zones of the estuary. These three communities were very similar between both estuaries. Their main characteristics were discussed together with the occurrence and distribution of the dominant species.For the Schelde estuary and to a lesser extent also for the Ems estuary, there was evidence that anthropogenic stress had a negative effect on the intertidal macrobenthic communities of the oligohaline/freshwater tidal zone. Only Oligochaeta were dominating, whereas the very euryhaline and/or true limnetic species were missing. In the mesohaline zone, the Schelde estuary was dominated by large numbers of short-living, opportunistic species, whereas in the Ems estuary relatively more stable macrobenthic communities were observed. A comparison with some other European estuaries showed in general similar trends as those observed for the Schelde and Ems estuaries.  相似文献   

11.
Ambassidae are represented in South African estuaries by three species which are very similar in external morphology, feeding ecology, alimentary system and distribution. The co-existence and spatial separation of these species of Ambassis in the estuaries of southern Africa can be explained by the tolerance of each to salinity and temperature. Investigations of the temperature tolerance ranges of the three species suggest that the osmoregulatory capability of Ambassis productus in reduced salinities (<10%) increases while that of A. gymnocephalus decreases sharply in salinities below 20%. A. natalensis , which is endemic to the south-east coast of Africa, is adapted to a wide range of estuarine conditions. Interaction between salinity and temperature tolerances on the limits within which Ambassis spp. survive is significant with regard to the distribution of the three species in estuaries. Catch data showed that A. productus is restricted to areas of low salinity and seasonal low temperature (upper reaches of estuaries), A. gynmocephalus to high salinities >25% (estuary mouths) and A. natalensis to intermediate salinities associated with the middle reaches of estuaries.  相似文献   

12.
Comparative study of the hyperbenthos of three European estuaries   总被引:6,自引:3,他引:3  
The hyperbenthic fauna of the subtidal channels of the Eems (N. Netherlands), Westerschelde (S.W. Netherlands), and Gironde (S.W. France) estuaries was sampled within a 15-day period in summer 1991. In each estuary, quantitative samples were taken at regularly spaced stations covering the entire salinity gradient from marine conditions at the mouth to nearly freshwater conditions upstream. The diversity of the samples and the distribution of the species along the main estuarine gradients were assessed. Hyperbenthic communities were identified using different multivariate statistical techniques. The species composition and the density and biomass of the dominant species of each community were compared among communities.  相似文献   

13.
A priority issue in ecology and biogeography is understanding the patterns in species diversity and the causal factors of their distribution, which allows the generation of information for conservation strategies. The longitudinal distribution of fishes and their relationships with environmental variables were studied in the Guayalejo-Río Tamesí system (northeastern Mexico) from February 2000 to July 2001. A total of 5918 fish were caught in 27 collections along an altitudinal gradient in the main river course, from high mountain (1500 masl) to coastal plain near Tampico. Forty-three native and five exotic species, belonging to 35 genera in 23 families, were identified. Cluster analyses identified four major fish habitats in the river system. A distinctive euryhaline marine fish habitat (1) occurs near the mouth with native and two exotic species. Two other habitats consist essentially of freshwater fish species that are distributed along the longitudinal gradient. One of these habitats (habitat 4) shows greater diversity, as per the Shannon index value, and also includes amphidromous fish, in addition to two exotic freshwater fish; the other (habitat 2) includes freshwater, euryhaline and three exotic species. The changes in the frequency of occurrence and the abundance of Gambusia vittata, Astyanax mexicanus, and Xiphophorus variatus contribute to explaining differences between these habitats. Another habitat (3) is represented by two sampling sites located near the mouth and consist of freshwater and euryhaline fish and three exotic cyprinids with broad salinity tolerance. The low abundance and richness of exotic species suggest little impact on native fish fauna in this river. The fish assemblage of the Guayalejo-Tamesí river system species changes along a longitudinal gradient with the addition, replacement and presence of indicator species. Upstream fish fauna is mostly composed of freshwater species, some of them generalists that inhabit the entire longitudinal gradient, others that are restricted to certain sites, and the remainder of species is an assemblage composed of a mixture of euryhaline freshwater and marine species near the mouth.  相似文献   

14.
The growth response of freshwater bacteria from the St. Lawrence River, exposed to brackish waters (salinity of 0 to 20(permil)) from the upper estuary, was assessed by a methodology requiring the combined use of dilution cultures and diffusion chambers. The longitudinal distribution of bacterial abundance in waters within this salinity range was also examined. Growth of the freshwater bacteria was reduced by 15 and 50% after exposure to salinities of 10 and 20(permil), respectively. At lower salinities, no growth reduction was observed, and at a salinity of 2(permil), growth was even stimulated. Longitudinal distribution data showed that bacterial abundance also peaked at this salinity. In contrast with an earlier hypothesis, this study shows that the decline of bacterial abundance in the low-salinity waters of the estuary is not caused by salinity-related mortality of freshwater bacteria, because the mixing time between fresh and marine (>20(permil)) waters is relatively long (days). However, results suggest that mortality of freshwater bacteria can be an important process in estuaries with shorter mixing times (hours). The combined use of diffusion chambers and dilution cultures proved to be a valuable methodology for assessing growth (or mortality) of bacteria exposed to environmental gradients.  相似文献   

15.
Variation in the life cycle of diadromous fishes can be explained by differential food availability between marine and freshwater habitats, since migration is often interpreted as a mechanism for exploiting food resources. Theoretically, a migration pattern of mainly remaining in freshwater occurs in tropical and subtropical habitats where fluvial productivity possibly exceeds marine productivity. However, in Yakugachi River, Amami-Oshima Island, southern Japan, low nutrient concentrations in the river suggest that food availability is limited for the subtropical Ryukyu-ayu Plecoglossus altivelis ryukyuensis. Since Ryukyu-ayu is an amphidromous fish that mainly grows in rivers after spending 2 months in the sea, limited food availability in rivers would force this species to migrate to other habitats with better food availability. Otolith increment and Sr:Ca analyses of 48 adult Ryukyu-ayu collected from the Yakugachi River revealed that all individuals visited estuaries more than three times after moving upstream. Although the specific growth rates of this species in the river had no correlation with the salinity profile in the fluvial period, this movement may be an adaptive choice because the salinity profile significantly affected the body size at maturity. Our results highlighted individual-based variations in amphidromous migration for utilizing estuaries, which could be explained by relatively higher productivity in estuarine than in freshwater and marine habitats.  相似文献   

16.
The green macroalgal genus Ulva (Ulvales, Ulvophyceae, Chlorophyta) is distributed worldwide from marine to freshwater environments. Comparative analyses of hyposalinity tolerance among marine, brackish, and freshwater Ulva species were performed by fluorescein diacetate viability counts. The subtidal marine species Ulva sp., collected from a depth of 30 m, showed the poorest tolerance to low salinity. This species died in 5 practical salinity units (PSU) artificial seawater or freshwater within 1 day. Its closely related species U. linza L. (an intertidal species) and U. prolifera Müller (a brackish species) showed varying tolerances to low salinity. After 7 days of freshwater exposure, the viability of U. linza L. decreased to approximately 20%, while U. prolifera Müller showed nearly 100% viability. The freshwater species U. limnetica Ichihara et Shimada, not yet found in coastal areas, was highly viable in seawater.  相似文献   

17.
Data on the species compositions and the ages, sizes, reproductive biology, habitats and diets of the main species in the ichthyofaunas of seven estuaries in temperate southwestern Australia have been collated. Twenty-two species spawn in these estuaries, of which 21 complete their lifecycles in the estuary. The latter group, which includes several species of atherinids and gobies with short lifecycles, make far greater contributions to the total numbers of fish in the shallows of these estuaries than in those of holarctic estuaries, such as the Severn Estuary in the United Kingdom. This is presumably related in part to far less extreme tidal water movements and the maintenance of relatively high salinities during the dry summers, and thus to more favourable conditions for spawning and larval development. However, since estuaries in southwestern Australia have tended to become closed for periods, there would presumably also have been selection pressures in favour of any members of marine species that were able to spawn in an estuary when that estuary became landlocked. Furthermore, the deep saline waters, under the marked haloclines that form in certain regions during heavy freshwater discharge in winter, act as refugia for certain estuarine species. The contributions of estuarine-spawning species to total fish numbers in the shallows varied markedly from 33 or 34% in two permanently open estuaries to ≥ 95% in an intermittently open estuary, a seasonally closed estuary and a permanently open estuary on the south coast, in which recruitment of the 0 + age class of marine species was poor. The larger estuarine species can live for several years and reach total lengths of ~ 700 mm and some estuarine species move out into deeper waters as they increase in size. Several marine species use southwestern Australian estuaries as nursery areas for protracted periods. However, sudden, marked increases in freshwater discharge in winter and resultant precipitous declines in salinity in the shallows, and in other regions where haloclines are not formed, are frequently accompanied by rapid and pronounced changes in ichthyofaunal composition, partly due to the emigration of certain marine species. In contrast, the ichthyofaunal compositions of macrotidal holarctic estuaries undergo annual, cyclical changes, due largely to the sequential entry of the juveniles of different marine species for short periods. The ichthyofaunal compositions of the narrow entrance channels, wide basins and saline riverine reaches of large, permanently open southwestern Australian estuaries vary, reflecting the marked tendency for some species to be restricted mainly to one or two of these regions. Comparative data indicate that the characteristics determined for ichthyofaunas in southwestern Australian estuaries apply in general to estuaries elsewhere in temperate Australia.  相似文献   

18.
The mollusc fauna of 64 sites in 31 tidal marshes was surveyed along a salinity gradient from freshwater to marine conditions in the river Scheldt (Belgium–The Netherlands). A total of 10649 specimens involving 31 taxa were identified. Salinity turned out to be a major factor in mollusc assemblages in the Scheldt estuary, but other factors can not be excluded. In the marine part five species were common, compared to the brackish part where only Assiminea grayana was abundant. In the freshwater zone species richness was highest (24). There was a significant correlation between flooding frequency and species richness in the tidal freshwater marsh `Durmemonding'. Finally, the survey confirmed the distribution of the amphibious hygromiid snail Pseudotrichia rubiginosa, a species which in Belgium only occurs in the marshes of the tidal freshwater part of the Scheldt and its tributaries.  相似文献   

19.
This study investigated the spatial distribution of subtidal nematode communities along the salinity gradients of two Portuguese estuaries exposed to different degrees of anthropogenic stress: the Mira and the Mondego.The nematode communities were mainly composed of Sabatieria, Metachromadora, Daptonema, Anoplostoma, Sphaerolaimus and Terschellingia species, closely resembling the communities of Northern European estuaries. In both estuaries, nematode density and community composition followed the salinity gradient, naturally establishing three distinct estuarine sections: (i) freshwater and oligohaline – characterised by the presence of freshwater nematodes, low nematode density and diversity; (ii) mesohaline – dominated by Terschellingia, Sabatieria and Daptonema, with low total density and diversity; and (iii) polyhaline and euhaline – where nematodes reached the highest density and diversity, and Paracomesoma, Synonchiella, and Odontophora were dominant.Despite the similarities in community composition and total nematode density, the proportion of different nematode feeding types were remarkably different in the two estuaries. In Mira, selective deposit feeders were dominant in the oligohaline section, while non-selective deposit feeders were dominant in the other sections. On the contrary, in the Mondego estuary, epigrowth-feeders and omnivores/predators were dominant in the freshwater sections and in the euhaline sector of the southern arm.Differences observed along each estuarine gradient were much stronger than overall differences between the two estuaries. In the Mondego estuary, the influence of anthropogenic stressors seemed not to be relevant in determining the nematodes' spatial distribution patterns, therefore suggesting that mesoscale variability responded essentially to natural stressors, characteristic of estuarine gradients. Nevertheless, the proportion of the different feeding types was different between the two estuaries, indicating that the response of nematode feeding guilds is able to reflect anthropogenic-induced stress and can be useful in assessing biological quality in transitional waters ecosystems.  相似文献   

20.
Physiological response of tropical organisms to salinity changes was studied for some marine, estuarine and freshwater fishes (Astyanax bimaculatus, Petenia karussii, Cyprinodon dearborni, and Oreochromis mossambicus), marine and freshwater crustaceans (Penaeus brasiliensis, Penaeus schmitti and Macrobrachium carcinus), and marine bivalves (Perna perna, Crassostrea rhizophorae, and Arca zebra) collected from Northeast Venezuela. They were acclimated for four weeks at various salinities, and (1) placed at high salinities to determine mean lethal salinity, (2) tested by increasing salinity 5@1000 per day to define upper lethal salinity tolerance limit, or (3) observed in a saline gradient tank to determine salinity preference. Acclimation level was the most significant factor. This phenomenon is important for tropical aquatic organisms in shallow waters, where they can adapt to high salinity during the dry season and cannot lose their acclimation level at low salinity during abrupt rain. For saline adaptation of tropical organisms, this behavior will contribute to their proliferation and distribution in fluctuating salinity environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号