首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many marine bacteria secrete exopolysaccharides (EPSs) that have important ecological and physiological functions. Numerous nutritional and environmental factors influence bacterial EPS production. However, the regulatory mechanisms of EPS production are poorly understood. The deep-sea Bacteroidetes bacterium Zunongwangia profunda SM-A87 can produce high quantities of EPS, and its EPS production is enhanced significantly by lactose. Here, we studied the reasons behind the significant advantage that lactose has over other carbon sources in EPS production in SM-A87. RNA-seq technologies were used to study lactose-regulated genes in SM-A87. The expression level of genes within the EPS gene cluster was up-regulated when lactose was added. Supplement of lactose also influenced the expression of genes located outside the EPS gene cluster that are also involved in EPS biosynthesis. The major glycosyl components of SM-A87 EPS are mannose, glucose and galactose. Genomic metabolic pathway analyses showed that the EPS precursor GDP-mannose can be synthesized from glucose, while the precursor UDP-glucose must be synthesized from galactose. Lactose can provide glucose and galactose simultaneously and prevent glucose inhibition. Lactose can also greatly stimulate the growth of SM-A87. Taken together, lactose acts not only as an inducer but also as a carbohydrate source for EPS production. This research broadens our knowledge of the regulation of EPS production in marine bacteria.  相似文献   

2.
Many marine microorganisms can secrete exopolysaccharides (EPSs) which have important applications in biotechnology. We have purified a novel EPS from deep-sea bacterium Zunongwangia profunda SM-A87, identified its glycosyl composition and linkage, and optimized its production to 8.9 g/l in previous studies. To reduce the fermentation cost, an economical fermentation medium containing 60.9 % whey, 10 g/l soybean meal, and 2.9 % NaCl was developed. The EPS yield of batch fermentation in this medium reached 12.1?±?0.3 g/l. Fed-batch fermentation was conducted and led to an EPS yield of 17.2?±?0.4 g/l, which represents the highest EPS yield ever reported for a marine bacterium. The EPS was extracted and it displayed good rheological properties, moisture-retention ability, and antioxidant activity. Particularly, its moisture-retention ability is superior to that of other marine bacterial EPSs reported to date. SM-A87 EPS also showed high antioxidant activity. These results suggest that SM-A87 EPS has promising potentials in biotechnology.  相似文献   

3.
Detailed analysis of the morphology of Florisphaera profunda from plankton samples collected at three sites in the Atlantic and Pacific Oceans reveals wide variation in this deep ocean-dwelling coccolithophore. In addition to the two varieties described previously, we found a third distinctive form, Florisphaera profunda var. rhinocera var. nov. All three varieties occur at each of the sampling sites. The analysis of monthly samples from different levels in the lower photic zone (LPZ) (100–200?m) at the Hawaii Ocean Time series station suggests that the varieties have similar distributions, which are correlated to primary productivity and the availability of light. The analysis of coccolith and coccosphere size in F. profunda reveals the existence of several size modes in Florisphaera profunda var. profunda and F. profunda var. elongata. The biological significance of these modes, or morphotypes is not known. However, their co-occurrence in single samples from different oceanic areas suggests that they are not ecophenotypes. In the light of recent molecular genetic analyses of intraspecific groups within commonly occurring coccolithophores, the varieties and size morphotypes of F. profunda are of significant interest for the study of marine phytoplankton biodiversity. Coccolithophores inhabiting the LPZ may be adapted to the low light, high nutrient conditions of this layer and hold great potential as a means to reconstruct past oceanographic conditions such as the position of the nutricline. However, coccolithophore biodiversity in the LPZ is poorly documented and the number of species may be much higher than previously thought.  相似文献   

4.
Liu SB  Qiao LP  He HL  Zhang Q  Chen XL  Zhou WZ  Zhou BC  Zhang YZ 《PloS one》2011,6(11):e26825
Zunongwangia profunda SM-A87 isolated from deep-sea sediment can secrete large quantity of exopolysaccharide (EPS). Response surface methodology was applied to optimize the culture conditions for EPS production. Single-factor experiment showed that lactose was the best carbon source. Based on the Plackett–Burman design, lactose, peptone and temperature were selected as significant variables, which were further optimized by the steepest ascent (descent) method and central composite design. The optimal culture conditions for EPS production and broth viscosity were determined as 32.21 g/L lactose, 8.87 g/L peptone and an incubation temperature of 9.8°C. Under these conditions, the maximum EPS yield and broth viscosity were 8.90 g/L and 6551 mPa•s, respectively, which is the first report of such high yield of EPS from a marine bacterium. The aqueous solution of the EPS displayed high viscosity, interesting shearing thinning property and great tolerance to high temperature, a wide range of pH, and high salinity.  相似文献   

5.
Summary

A brief overview is given of the importance of Scotland for Atlantic bryophytes within Europe and worldwide. The life strategies of Atlantic species are discussed and the main habitats of Atlantic bryophytes listed. A consideration of the use of distribution data to identify ‘hotspots’ and sites for conservation is made. Grimmia britannica A.J.E. Smith and Marsupella profunda Lindb. are added to the list of Atlantic species in Britain and Ireland.  相似文献   

6.
Abstract-Molecular genetic and morphological analysis of eelpouts of the genus Zoarces was carried out. Based on the mitochondrial DNA sequence variation, haplotypes of notched-fin eelpout, Z. elogatus, more closely related Fedorov eelpout, Z. fedorovi, and common eelpout, Z. viviparus, as well as of Andriyashev eelpout, Z. andriashevi, were grouped in one macrocluster. Haplotypes of American eelpout, Z. americanus, and blotched eelpout, Z. gillii, clustered separately from other species. The genetic differences between Z. gillii and the other eelpout species were very high for within-genus comparisons, constituting 7.62%. Species divergence in terms of morphological characters was generally consistent with molecular genetic data and confirmed distinct isolation of American eelpout, and especially of blotched eelpout.  相似文献   

7.
The present study was initiated to ascertain the significance of coccolithophores as a proxy for paleoceanographic and paleoproductivity studies in the equatorial Atlantic. Data from a range of different samples, from the plankton, surface sediments as well as sediment cores are shown and compared with each other.In general, the living coccolithophores in the surface and subsurface waters show considerable variation in cell numbers and distribution patterns. Cell densities reached a maximum of up to 300×103 coccospheres/l in the upwelling area of the equatorial Atlantic. Here, Emiliania huxleyi is the dominant species with relatively high cell numbers, whereas Umbellosphaera irregularis and Umbellosphaera tenuis are characteristic for oligotrophic surface waters. Although they are observed in high relative abundances, these species only occur in low absolute numbers. The lower photic zone is dominated by high abundances and considerable cell numbers of Florisphaera profunda.The geographical distribution pattern of coccoliths in surface sediments reflects the conditions of the overlying surface water masses. However, abundances of the oligotrophic species Umbellosphaera irregularis and Umbellosphaera tenuis are strongly diminished, causing an increase in relative abundance of the lower photic zone taxa Florisphaera profunda and Gladiolithus flabellatus.During the past 140,000 years the surface water circulation of the equatorial Atlantic has changed drastically, as can be seen from changes in the coccolithophore species composition, absolute coccolith numbers, as well as coccolith accumulation rates. Significant increases in coccolith numbers and accumulation rates is observed in the southern equatorial Atlantic during the last glacial interval (oxygen isotope stages 2–4), which we attribute to enhanced upwelling intensities and advection of cool nutrient rich waters at this site. In the western equatorial Atlantic we observe an opposite trend with decreasing numbers of coccoliths during glacial periods, which probably is caused by a deepening of the thermocline.  相似文献   

8.
Lipid A anchors the lipopolysaccharide (LPS) to the outer membrane and is usually composed of a hexa‐acylated diglucosamine backbone. Burkholderia cenocepacia, an opportunistic pathogen, produces a mixture of tetra‐ and penta‐acylated lipid A. “Late” acyltransferases add secondary acyl chains to lipid A after the incorporation of four primary acyl chains to the diglucosamine backbone. Here, we report that B. cenocepacia has only one late acyltransferase, LpxL (BCAL0508), which adds a myristoyl chain to the 2′ position of lipid A resulting in penta‐acylated lipid A. We also identified PagL (BCAL0788), which acts as an outer membrane lipase by removing the primary β ‐hydroxymyristate (3‐OH‐C14:0) chain at the 3 position, leading to tetra‐acylated lipid A. Unlike PagL, LpxL depletion caused reduced cell growth and defects in cell morphology, both of which were suppressed by overexpressing the LPS flippase MsbA (BCAL2408), suggesting that lipid A molecules lacking the fifth acyl chain contributed by LpxL are not good substrates for the flippase. We also show that intracellular B. cenocepacia within macrophages produced more penta‐acylated lipid A, suggesting lipid A penta‐acylation in B. cenocepacia is required not only for bacterial growth and morphology but also for adaptation to intracellular lifestyle.  相似文献   

9.
Comparative-osteological investigation of all species of the genus Zoarces is made: Z. fedorovi, Z. andriashevi, Z. elongatus, Z. viviparus, Z. americanus, and Z. gillii. In the skeleton of hyoid arch in species of Zoarces, Lycozoarces, and Lycodes, paired bony elements are found, not described previously, identified as parurohyalia which may be synapomorphy of Zoarcidae. Differences between the Zoarces species are revealed by 56 external morphological and osteological characters. Cladistic analysis yielded one tree 135, Ci 0.57, Ri 0.54 long. Cladistic analysis confirms validity of a recently described species Z. fedorovi, which turned out to be the most generalized in the genus Zoarces, as well as the validity of Z. elongatus. The species Z. americanus and Z. gillii occupy a terminal position preventing their isolation to independent genera as was previously supposed, as this would lead to paraphyly of the genus Zoarces.  相似文献   

10.
Lipid A's from two Bradyrhizobium species and from the phylogenetically closely related species Pseudomonas carboxydovorans were found to contain 2,3-diamino-2,3-dideoxy-glucose as lipid A backbone sugar. In contrast, three representatives of the genus Rhizobium, as well as the phylogenetically related species Agrobacterium tumefaciens, contain solely glucosamine as lipid A backbone sugar. These findings suppor independent studies on the phylogenetical relatedness based on 16S rRNA-data of the genus Bradyrhizobium with Pseudomonas carboxydovorans and Rhodopseudomonas palustris, which form a tight phylogenetical cluster and which all contain the 2,3-diamino-2,3-dideoxy-glucose-containing lipid A. The relatedness of these species to the glucosamine-containing species of the genus Rhizobium and to Agrobacterium tumefaciens is rather distant as documented by 16S rRNA studies.Abbreviations LPS lipopolysaccharide - KDO 2-keto-3-deoxyoctonic acid - GalA galacturonic acid - ld-heptose l-glycero-d-manno-heptose - dd-heptose d-glycero-d-manno-heptose - DOC sodium deoxycholate - PAGE polyacrylamide gel electrophoresis - DAG 2,3-diamino-2,3-dideoxy-glucose  相似文献   

11.
The structural elucidation of lipid A of the cell wall lipopolysaccharide (LPS) ofRhodospirillum salinarum 40 by chemical methods and laser desorption mass spectrometry revealed the presence of a mixed lipid A composed of three different 1,4 bisphosphorylated β(1→6)-linked backbone hexosaminyl-hexosamine disaccharides, i.e. those composed of GlCN→GlcN, 2,3-diamino-2,3-dideoxy-d-Glc-(DAG)→DAG, and DAG→GlcN. Lipid A ofR. salinarum contained preferentially 3-OH-18:0 and 3-OH-14:0 as amide-linked andcisΔ11-18:1 and c19:0 as ester-linked fatty acids. The mass spectra of the liberated acyl-oxyacyl residues proved the concomitant presence of 3-O-(cisΔ11-18:1)-18:0 and 3-O-(c19:0)-14:0 as the predominating diesters in this mixed lipid A. The glycosidically linked and the ester-linked phosphate groups of the backbone disaccharide were neither substituted by ethanolamine phosphorylethanolamine, nor by 4-amino-4-deoxy-l-arabinose, in contrast to most of the enterobacterial lipid As. In the core oligosaccharide fraction, a HexA (1→4)HexA(1→5)Kdo-trisaccharide was identified by methylation analysis. The terminal HexA (hexuronic acid) is possibly 4-OMe-GalA, a component described here as an LPS constituent for the first time. LPS ofR. salinarum showed a lethality in C57BL/10 ScSN (LPS-responder)-mice) of an order of 10−1–10−2 of that reported forSalmonella abortus equi LPS, and it was also capable of inducing TNFα and IL6 in macrophages of C57BL/10ScSN mice.  相似文献   

12.
The moist and cool cloud forests of East Africa represent a network of isolated habitats that are separated by dry and warm lowland savannah, offering an opportunity to investigate how strikingly different selective regimes affect species diversification. Here, we used the passerine genus Zosterops (white‐eyes) from this region as our model system. Species of the genus occur in contrasting distribution settings, with geographical mountain isolation driving diversification, and savannah interconnectivity preventing differentiation. We analyze (1) patterns of phenotypic and genetic differentiation in high‐ and lowland species (different distribution settings), (2) investigate the potential effects of natural selection and temporal and spatial isolation (evolutionary drivers), and (3) critically review the taxonomy of this species complex. We found strong phenotypic and genetic differentiation among and within the three focal species, both in the highland species complex and in the lowland taxa. Altitude was a stronger predictor of phenotypic patterns than the current taxonomic classification. We found longitudinal and latitudinal phenotypic gradients for all three species. Furthermore, wing length and body weight were significantly correlated with altitude and habitat type in the highland species Z. poliogaster. Genetic and phenotypic divergence showed contrasting inter‐ and intraspecific structures. We suggest that the evolution of phenotypic characters is mainly driven by natural selection due to differences in the two macro‐habitats, cloud forest and savannah. In contrast, patterns of neutral genetic variation appear to be rather driven by geographical isolation of the respective mountain massifs. Populations of the Z. poliogaster complex, as well as Z. senegalensis and Z. abyssinicus, are not monophyletic based on microsatellite data and have higher levels of intraspecific differentiation compared to the currently accepted species.  相似文献   

13.
From the biomass of five Pseudomonas fluorescensbiovar I strains, including the P. fluorescenstype strain IMV 4125 (ATCC 13525), lipopolysaccharides (LPS) were isolated (by extraction with a phenol–water mixture followed by repeated ultracentrifugation), as well as individual structural components of the LPS macromolecule: lipid A, the core oligosaccharide, and O-specific polysaccharide (O-PS). 3-Hydroxydecanoic, 2-hydroxydodecanoic, 3-hydroxydodecanoic, dodecanoic, hexadecanoic, octadecanoic, hexadecenoic, and octadecenoic fatty acids were present in lipid A of the LPS of all the strains studied. Glucosamine, ethanolamine, and phosphoethanolamine were revealed in the lipid A hydrophilic part of all of the strains. Glucose, rhamnose, mannoze, glucosamine, galactosamine, KDO, a trace amount of heptoses, ethanolamine, phosphoethanolamine, alanine, and phosphorus were identified as the main core components. Interstrain differences in the core oligosaccharide composition were revealed. Structural analysis showed that the O-PS of the type strain, as distinct from that of other strains, is heterogeneous and contains two types of repetitive units, including (1) three L-rhamnose residues (L-Rha), one 3-acetamide-3,6-dideoxy-D-galactose residue (D-Fuc3NAc) as a branching substitute of the L-rhamnan chain and (2) three L-Rha residues and two branching D-Fuc3NAc residues. The type strain is also serologically distinct from other biovar I strains due to the LPS O-chain structure, which is similar to those of the strains of the species Pseudomonas syringae, including the type strain. The data of structural analysis agree well with the results of immunochemical studies of LPS.  相似文献   

14.
The structures of the capsular polysaccharides (CPSs) of the two clinical isolates Acinetobacter baumannii SMAL and MG1 were elucidated. Hot phenol/water extractions of the dry biomasses, followed by enzymatic digestions and repeated ultracentrifugations led to the isolation of polysaccharides that were negative in Western blot analysis utilizing an anti-lipid A antibody, thus proving that they were not the LPS O-antigens but CPSs. Their structures were established on the basis of NMR spectroscopy and GC-MS analyses. The A. baumannii MG1 CPS consisted of a linear aminopolysaccharide with acyl substitution heterogeneity at the N-4 amino group of QuipN4N:4)-α-d-GlcpNAc-(1→4)-α-l-GalpNAcA-(1→3)-β-d-QuipNAc4NR-(1→R = 3-hydroxybutyrryl or acetyl.The repeating unit of the CPS produced by strain SMAL is a pentasaccharide, already reported for the O-antigen moiety from A. baumannii strain ATCC 17961:  相似文献   

15.
An orange-pigmented, Gram-negative, nonmotile, strictly aerobic and oxidase- and catalase-positive bacterium (SM-A87(T)) was isolated from the deep-sea sediment of the southern Okinawa Trough area. The main fatty acids were i15 : 0, i17 : 0 3OH, i15 : 1 G, i17 : 1 omega 9c, 15 : 0, i15 : 0 3OH and summed feature 3 (comprising i-15 : 0 2OH and/or 16 : 1 omega 7c). MK-6 was the predominant respiratory quinone. DNA G+C content was 35.8 mol%. Flexirubin-type pigments were absent. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain SM-A87(T) formed a distinct lineage within the family Flavobacteriaceae, with <93% sequence similarity to the nearest strain of genus Salegentibacter. Moreover, strain SM-A87(T) could be distinguished from the nearest phylogenetic neighbors by a number of chemotaxonomic and phenotypic properties. On the basis of polyphasic analyses, it is proposed that strain SM-A87(T) be classified in a novel genus and a new species in the family Flavobacteriaceae, designated Wangia profunda gen. nov., sp. nov. The type strain is SM-A87(T) (CCTCC AB 206139(T)=DSM 18752).  相似文献   

16.
Two species of Phycodrys, Phycodrys quercifolia (Bory) Skottsberg and Phycodrys profunda E.Y.Dawson were previously recorded from New Zealand. However, an examination of Phycodrys collections from the New Zealand region showed that all were morphologically different from P. quercifolia (Type locality: the Falkland Islands) and P. profunda (Type locality: CA, USA). RbcL sequence analyses established that the New Zealand Phycodrys species formed a natural assemblage within the genus, consisting of three new species: P. novae-zelandiae sp. nov., P. franiae sp. nov. and P. adamsiae sp. nov. Phycodrys novae-zelandiae is the largest of the three, up to 20 cm in height, with a distinct midrib and multicellular, opposite to subopposite lateral macroscopic veins. It has entirely monostromatic blades except near the midrib and veins, and its procarp contains a three-celled sterile group one (st1) and a one-celled sterile group two (st2). Phycodrys franiae was previously treated as a cryptic species among herbarium collections of P. ‘quercifolia’. It is smaller (4–11 cm high) with weakly developed midribs and veins, the blade is tristromatic throughout, except at the growing margins, and the procarp consists of a four-celled st1 and a two–three-celled st2. Phycodrys adamsiae, previously reported as P. profunda, is a small decumbent or prostrate plant, 1–8 cm long, with a midrib and inconspicuous lateral veins. The blades are tristromatic with serrated margins, two–four-celled surface spines and multicellular marginal holdfasts that differ from those of Californian specimens. The tetrasporangia are borne on marginal bladelets. Phylogenetic analyses place the New Zealand species in a separate group that is distantly removed from most other Phycodrys species.  相似文献   

17.
ABSTRACT

A new wing-reduced species of the stonefly genus Zelandoperla Tillyard is described from Otago, New Zealand. Zelandoperla maungatuaensis sp. n. differs from a related species, Z. denticulata, primarily by lacking full wing development. We used morphological, geographical, and genetic evidence to assess the proposed status of Z. maungatuaensis sp. n. and Z. denticulata as separate monomorphic species, as opposed to conspecific members of a polymorphic species. High genetic divergence was found between distinctly allopatric populations, supporting the status of Z. maungatuaensis sp. n. as a distinct monomorphic species.  相似文献   

18.
Phenol-water extraction of Rhizobium loti NZP2213 cells allowed a simultaneous isolation of two structurally different lipopolysaccharides, from the aqueous (LPS-W) and phenol (LPS-P) phase that differed in their sodium doexycholate-PAGE pattern and composition. LPS-W showed a profile indicating an R-type LPS; LPS-P had a cluster of poorly resolved bands in the high-molecular-weight region. LPS-P contained large amounts of 6-deoxy-l-talose (6dTal), and a small amount of 2-O-methyl-6-deoxy-talose (molar ratio 30:1), both of which were completely absent in LPS-W. Methylation analysis gave only one major product, 2,4-di-O-methyl-6dTal, indicating that the O-chain is composed of a homopolymer of 1,3-linked 6dTal, having the methylated 6dTal (2-O-me-6dTal) probably localized at the non-reducing end of the O-chain. This homopolymeric O-chain was additionally O-acetylated, as evidenced by GC-MS and by 13C NMR analysis. The lipid A moieties of both LPS-W and LPS-P showed almost identical composition, with six, different 3-OH fatty acids and with two, so far not described, long-chain 4-oxo-fatty acids, all being amide-linked, and with 27-OH-28:0 as the main ester-linked fatty acid. Lipid A was of the lipid ADAG-type, i.e., having a (phosphorylated) 2,3-diamino-2,3-dideoxy-d-glucose-containing lipid A backbone. Lipid ADAG is widespread among species of the -2 group of Proteobacteria, but has so far not been encountered in any other rhizobial or agrobacterial species.  相似文献   

19.
A yellow pigmented bacterium designated strain MBLN094T within the family Flavobacteriaceae was isolated from a halophyte Salicornia europaea on the coast of the Yellow Sea. This strain was a Gram-stain negative, aerobic, non-spore forming, rod-shaped bacterium. Phylogenetic analysis of the 16S rRNA gene sequence of strain MBLN094T was found to be related to the genus Zunongwangia, exhibiting 16S rRNA gene sequence similarity values of 97.0, 96.8, 96.4, and 96.3% to Zunongwangia mangrovi P2E16T, Z. profunda SM-A87T, Z. atlantica 22II14-10F7T, and Z. endophytica CPA58T, respectively. Strain MBLN094T grew at 20?37°C (optimum, 25?30°C), at pH 6.0?10.0 (optimum, 7.0?8.0), and with 0.5?15.0% (w/v) NaCl (optimum, 2.0?5.0%). Menaquinone MK-6 was the sole respiratory quinone. The polar lipids were phosphatidylethanolamine, two unidentified aminolipids, and four unidentified lipids. Major fatty acids were iso-C17:0 3-OH, summed feature 3 (C16:1ω6c and/or C16:1 ω7c), and iso-C15:0. The genomic DNA G + C content was 37.4 mol%. Based on these polyphasic taxonomic data, strain MBLN094T is considered to represent a novel species of the genus Zunongwangia, for which the name Zunongwangia flava sp. nov. is proposed. The type strain is MBLN094T (= KCTC 62279T = JCM 32262T).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号