首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Predicted increases in temperature associated with climate change are expected to have consequences for fish, in particular for Arctic charr, Salvelinus alpinus, a cold-adapted fish species. Despite differences in predicted hydroecological responses to climate change in fluvial and lacustrine environments, little is known of whether fluvial and lacustrine Arctic charr populations may respond differently to increasing temperatures. In order to compare growth and thermal habitat use between habitat types, otolith-inferred average water temperatures estimated from whole otoliths and fork lengths at capture were measured for young-of-the-year (YOY) Arctic charr obtained from two proximal fluvial and lacustrine sites in Labrador, Canada. Otolith-inferred average experienced water temperatures were not significantly correlated with air temperatures at both sites, suggestive of behavioural thermoregulation by YOY. The majority of Kogluktokoluk Brook (fluvial) YOY were found using water temperatures consistent with laboratory determined preferred temperatures for juvenile Arctic charr, whereas most Tom's Pond (lacustrine) YOY were found using temperatures ranging between preferred temperatures and optimal temperatures for growth. There was no consistent difference between mean water temperatures used between YOY from the two sites. Otolith-inferred average experienced water temperatures were only correlated to fork lengths in Tom's Pond YOY. The lack of correlation in Kogluktokoluk Brook YOY is argued to reflect resource partitioning occurring as a result of territoriality known to occur among stream salmonids. The limited range of temperatures used by fluvial YOY in this study, particularly the lack of cooler temperatures, also suggests that fluvial YOY may face barriers to thermal refugia, and as a result may be particularly vulnerable to climate change.  相似文献   

2.
The seedlings of twenty eight annual and perennial desert plants belonging to fifteen families were raised under controlled growth conditions and subjected to a range of tests. The water use efficiency, photosynthesis, extreme temperatures and drought tolerance were monitored. The results were discussed for their ecological significance as a basic information to applied research. Seedlings which were more tolerant to extreme high and low temperatures and drought were more capable of controlling water loss through better water use efficiency. At temperatures below 25°C, the annual plants had higher photosynthetic rate than perennials, whereas at higher temperatures, the perennials were advantaged.  相似文献   

3.
Differential scanning calorimetry (DSC) thermograms of soybean protein isolate developed two peaks corresponded to 11S and 7S globulin, the denaturation temperatures of which were 93.3 and 76.5°C, respectively, with 94% water. These peaks shifted to higher temperatures with lower water contents of the sample. At 47% water, there were two peaks, at 149 and 118.7°C, and at 11% water, there was one peak at 180°C. The DSC thermogram measured during cooling and reheating gave no peak. The soybean protein isolate was heated with 24.5% water at 100°C and then mixed with more water to the water contents of 94%. This sample gave two peaks at temperatures close to those of the original soybean protein, indicating that the soybean protein was not denatured at temperatures even above 100°C when the water content was low.  相似文献   

4.
The South China Sea (SCS) is the largest marginal sea of the western Pacific Ocean, yet little is known about archaeal distributions and TEX86-based temperatures in this unique oceanic setting. Here we report findings of abundances in both core lipids (CL) and intact polar lipids (IPL) of Archaea from surface water (CL only) and core-top sediments from different regions of the SCS. TEX86-derived temperatures were also calculated for these samples. The surface water had extremely low abundances of CL (average of 0.05 ± 0.13 ng/liter; n = 75), with higher values present in regions where upwelling is known to occur. The core-top sediments had CL values of 0.1 to 0.9 μg/g, which are on the low end of CL concentrations reported for other marine sediments and may reflect the oligotrophic nature of the open SCS. The IPL of Archaea accounted for 6 to 36.4% of total lipids (CL plus IPL), indicating that the majority of archaeal lipids in core-top sediments were derived from nonliving cells. The TEX86-based temperatures of surface water were overall lower than satellite-based sea surface temperatures or CTD-measured in situ temperatures. The core-top sediment samples, however, had TEX86 temperatures very close to the mean annual sea surface temperatures, except for samples with water depths of less than 100 m. Our results demonstrated low and heterogeneous distributions of archaeal lipids in surface water and core-top sediments of the SCS, which may reflect local or regional differences in productivity of Archaea. While TEX86-based temperatures for core-top marine sediments at deep water depths (>100 m) generally reflected mean annual sea surface temperatures, TEX86 temperatures in surface water varied basin wide and underestimated sea surface temperatures in most locations for the season when surface water samples were collected.  相似文献   

5.
Summary The Bergum power station (600 MW) of the Friesian Provincial Electricity Board is situated at the northern shore of the Lake Bergum. The lake has a mean depth of 1.3 m and a surface area of 4.4 km2. Its northern half is separated by a break-water into an intake area in the north-west and a discharge area in the north-east.The Lake Bergum is connected with other water bodies in the northern provinces of the Netherlands by four canals. The whole yaer various amounts of water enter Lake Bergum mainly from the western canal (Prinses Margrietkanaal) and to a lesser extent from the southern canal (De Lits). In wet seasons lake water flows off, mainly after passing the power station, to the northern canal (De Zwemmer); then the heated water (22 m3.sec–1) does not enter the discharge area of the lake. When evapo-transpiration exceeds precipitation lake water flows off mainly to the eastern canal (Kolonelsdiep). In these relatively dry periods most of the heated water returns to the lake in the discharge area.We found that the mean increase in water temperature effected by the condensors of the power station was ca. 5°C; the maximum increase was 7.5°C. On average about 25% of the whole lake had a noticable higher (1°C) temperature than the intake water, only 6.5% was about 2°C above ambient temperatures.For about 3.5 years (1974–Sept. 1978) water samples for analysis of the chlorophyll concentrations of the different areas within the lake and the surrounding canals were taken every week during the growing season, and fortnightly during the winter period. The chlorophyll concentrations of the intake water were about 5% higher than those of the discharge water leaving the power station. Near the mouth of the northern canal in the discharge area still small, but significant lower chlorophyll concentrations were found. The southern half of the lake, in which practically no elevated water temperatures were found, had significant higher chlorophyll concentrations (10–15%) than the intake area. Water entering the lake from the western canal had significant (10–15%) lower chlorophyll concentrations than the intake area of the lake. Probably, relatively chlorophyll-poor canal water and chlorophyll-rich water from the southern lake area mix in the intake area. While the water passes the power station the chlorophyll concentrations decrease. In the discharge area of the lake the chlorophyll concentrations of the discharge water gradually increase again to values equal to those of the intake area.During the last 2 years of the research period oxygen production and consumption experiments were conducted almost every month. In each experiment light and dark botties containing intake and discharge water were suspended in water with both water temperatures. The light intensities during the incubation periods (2–3 hours) were chosen according to maximum production values. The incubations were started within one hour and/or one day after sampling. Directly after sampling gross productivity of the intake water incubated at discharge temperatures was about 1.5 times as high as at intake temperatures. The gross productivity of the discharge water was always somewhat lower than the gross productivity of the intake water incubated at corresponding temperatures. After one day this inhibiting effect of passage through the power station had increased, even when the discharge water had been cooled down to intake temperatures immediately after sampling.The oxygen consumption of the discharge water incubated at discharge temperatures as well as at intake temperatures was about 1.3 times the oxygen consumption of the intake water at intake temperatures. After one day the discharge water, which had stayed at discharge temperatures, consumed 1.6–1.7 times as much as the intake water incubated at intake temperatures. The oxygen consumption of the discharge water which had been cooled down to intake temperatures directly after sampling, was after one day still 1.3 times the oxygen consumption of the intake water at intake temperatures.This research was financially supported by the Ministerie van Volksgezondheld en Millieuhygiëne (Ministry of Public Health and the Environment). An extensive report (in Dutch) will be published this year.  相似文献   

6.
The temperature of the roots and shoots of Zea mays plants werevaried independently of each other and the rates of leaf extensionand leaf water potentials were measured. Restrictions of leafextension occurred when root temperatures were lowered from35 to 0 °C, but leaf water potentials were lowered onlyat root temperatures below 5 °C. Similar changes in ratesof leaf extension were measured at air temperatures from 30to 5 °. Between 30 and 35 °C air temperature, in anunsaturated atmosphere, restrictions of leaf extension wereassociated with low leaf water potentials. It was concluded that, at root temperatures 5 to 35 °C,and shoot temperatures 5 to 30 °C, water stress was notthe main factor restricting the extension of Zea mays leaves.  相似文献   

7.
Metabolic rates, VO2, were studied in four muskrats (Ondatra zibethicus) swimming in a water channel at velocities of 0.2 to 0.75 m/s in water at temperatures of 25 and 30 degrees C. At both water temperatures, VO2 increased linearly with increasing swimming velocity. The VO2 was higher for muskrats swimming in water at 25 than 30 degrees C. The metabolic performance of swimming appears to be influenced by the interaction of swimming velocity and water temperature.  相似文献   

8.
Desert endotherms such as Merriam's kangaroo rat (Dipodomys merriami) use both behavioral and physiological means to conserve energy and water. The energy and water needs of kangaroo rats are affected by their thermal environment. Animals that choose temperatures within their thermoneutral zone (TNZ) minimize energy expenditure but may impair water balance because the ratio of water loss to water gain is high. At temperatures below the TNZ, water balance may be improved because animals generate more oxidative water and reduce evaporative water loss; however, they must also increase energy expenditure to maintain a normal body temperature. Hence, it is not possible for kangaroo rats to choose thermal environments that simultaneously minimize energy expenditure and increase water conservation. I used a thermal gradient to test whether water stress, energy stress, simultaneous water and energy stress, or no water/energy stress affected the thermal environment selected by D. merriami. During the night (i.e., active phase), animals in all four treatments chose temperatures near the bottom of their TNZ. During the day (i.e., inactive phase), animals in all four treatments settled at temperatures near the top of their TNZ. Thus, kangaroo rats chose thermal environments that minimized energy requirements, not water requirements. Because kangaroo rats have evolved high water use efficiency, energy conservation may be more important than water conservation to the fitness of extant kangaroo rats.  相似文献   

9.
Ulrich Sinsch 《Oecologia》1984,64(1):125-131
The diurnal behaviour of frogs was recorded quantitatively in a habitatlike experimental environment by a new method of automatic registration via thermocouples. Three species with different habitat preferences during their summer activity period were chosen: the terrestrial common frog Rana temporaria LINNÈ and the semiaquatic water frog Rana lessonae CAMERANO and Rana ridibunda PALLAS. The activity, the location and the skin temperatures of these frogs were recorded continuously in four different temperature ranges (8.1° C–31.0° C) within the temperature span of the summer activity period. The thermal requirements and behavioural adaptations to the habitat of each species were analysed. The experimental results coincided with field observations and showed some details not yet known. The northern species R. temporaria exhibited a distinctive behavioural thermoregulation including cooling behaviour at high temperatures and warming behaviour at low temperatures during the day. In all temperatures tested these frogs remained on land changing their preferred location from the open area to the hiding places. The main activity period shifted from night to day with decreasing temperatures. The more southern species R. lessonae preferred higher temperatures than the other species showing basking behaviour during the day independent of the ambient temperature. With decreasing temperatures the preferred location changed from the shore to the water and the activity during the night almost disappeared. The closely related R. ridibunda tolerated high temperatures too, but only rarely basked. This species, however, reacted contrarily to decreasing temperatures: it changed its preference from the water to the land. This behavioural differenciation between the water frog species may be of importance for the actual habitat preference of these central european water frogs.  相似文献   

10.
The thermoregulatory behavior of Hemigrapsus nudus, the amphibious purple shore crab, was examined in both aquatic and aerial environments. Crabs warmed and cooled more rapidly in water than in air. Acclimation in water of 16 degrees C (summer temperatures) raised the critical thermal maximum temperature (CTMax); acclimation in water of 10 degrees C (winter temperatures) lowered the critical thermal minimum temperature (CTMin). The changes occurred in both water and air. However, these survival regimes did not reflect the thermal preferences of the animals. In water, the thermal preference of crabs acclimated to 16 degrees C was 14.6 degrees C, and they avoided water warmer than 25.5 degrees C. These values were significantly lower than those of the crabs acclimated to 10 degrees C; these animals demonstrated temperature preferences for water that was 17 degrees C, and they avoided water that was warmer than 26.9 degrees C. This temperature preference was also exhibited in air, where 10 degrees C acclimated crabs exited from under rocks at a temperature that was 3.2 degrees C higher than that at which the 16 degrees C acclimated animals responded. This behavioral pattern was possibly due to a decreased thermal tolerance of 16 degrees C acclimated crabs, related with the molting process. H. nudus was better able to survive prolonged exposure to cold temperatures than to warm temperatures, and there was a trend towards lower exit temperatures with the lower acclimation (10 degrees C) temperature. Using a complex series of behaviors, the crabs were able to precisely control body temperature independent of the medium, by shuttling between air and water. The time spent in either air or water was influenced more strongly by the temperature than by the medium. In the field, this species may experience ranges in temperatures of up to 20 degrees C; however, it is able to utilize thermal microhabitats underneath rocks to maintain its body temperature within fairly narrow limits.  相似文献   

11.
Temperatures 10 and 2 cm above water level, in leaves of Salvinia molesta Mitchell, and 2 and 10 cm below water level, were measured in the field at hourly intervals over a total of 125 days. Temperature cycles of leaves and air had mean diurnal amplitudes of 8°C in summer and 17°C in winter; cycles in water lagged behind and had amplitudes which decreased with depth. Most parts of S. molesta were warmer than the air at a nearby weather station most of the time and there was temperature stratification in the water during the warm part of each day.Standard meteorological variables were selected, using stepwise regression, to predict daily maximum and minimum temperatures of S. molesta. Thermal inertia of water in the lake seemed to elevate S. molesta temperatures in autumn and depress them in spring compared with temperatures at the weather station. Better predictors were obtained by adding to meteorological variables a function based on the annual cycle of temperatures 10 cm below water level. Hourly temperatures experienced by S. molesta were predicted using curves fitted to diurnal cycles. The reliability of predictions was tested for each season of the year with independent data for a total of 78 days. Predicted temperatures were close to observed temperatures both in absolute terms and in terms of temperature-dependent growth rates of S. molesta.  相似文献   

12.
This paper reports data and models for temperatures and energy flows for the Tres Rios surface flow wetlands. Treatment wetlands are solar powered ecosystems, resulting in annually cyclic temperatures. There is also a daily cycle in wetland water temperature of several degrees amplitude. The timing of individual daily measurements may therefore bias the result to values different from the daily mean. The energy balance is dominated by radiation to and from the wetland, heat transfer from air, and evaporative losses. Transpiration causes energy dissipation from the canopy, while evaporation causes energy loss from and cooling of the surface water. Transpiration was found to dominate the water loss. Downstream daily average water temperatures are cooler than daily average air temperatures at all times of the year, due to evaporative cooling. Water cools as it passes from inlet to outlet. The excess sensible heat is dissipated during travel through the inlet region of the wetland. For long detention times, longer than about five days, water temperature reaches a balance condition. Up to that time, sensible heat from the source water also influences evaporation and water temperature. Balance water temperatures ranged from 3.9 °C in winter to 27.2 °C in summer, while mean daily air temperatures ranged from 5.3 to 37.2 °C. Diel variations were found to range up to 6 °C. Stochastic variability produced a band width of ±5 °C. Energy balance models provide a good representation of these phenomena, but are subject to large sensitivity to input variables, especially air temperature, humidity and wind. Evapotranspiration was higher than that predicted for a balance condition, because of the warmth of the incoming water. It was less than that predicted for a grass crop.  相似文献   

13.
We present a detailed analysis of the picosecond-to-nanosecond motions of green fluorescent protein (GFP) and its hydration water using neutron scattering spectroscopy and hydrogen/deuterium contrast. The analysis reveals that hydration water suppresses protein motions at lower temperatures (<∼200 K), and facilitates protein dynamics at high temperatures. Experimental data demonstrate that the hydration water is harmonic at temperatures <∼180–190 K and is not affected by the proteins’ methyl group rotations. The dynamics of the hydration water exhibits changes at ∼180–190 K that we ascribe to the glass transition in the hydrated protein. Our results confirm significant differences in the dynamics of protein and its hydration water at high temperatures: on the picosecond-to-nanosecond timescale, the hydration water exhibits diffusive dynamics, while the protein motions are localized to <∼3 Å. The diffusion of the GFP hydration water is similar to the behavior of hydration water previously observed for other proteins. Comparison with other globular proteins (e.g., lysozyme) reveals that on the timescale of 1 ns and at equivalent hydration level, GFP dynamics (mean-square displacements and quasielastic intensity) are of much smaller amplitude. Moreover, the suppression of the protein dynamics by the hydration water at low temperatures appears to be stronger in GFP than in other globular proteins. We ascribe this observation to the barrellike structure of GFP.  相似文献   

14.
Abstract. The influence of insulating dead leaves on water balance in Espeletia timotensis Cuatr., an Andean caulescent giant rosette plant, was studied under field and laboratory conditions. Removal of the dead leaf layer surrounding the stem changed the pattern of diurnal stem temperature variation and produced transient and permanent effects on water balance. The pattern of liquid water flow resistance increase at low stem temperatures suggested that much of the water flow in the stem was through living membranes, probably those of the pith cells. The pith was determined to be an important source of stored water for daily transpirational needs. The lethal effects of dead leaf removal were attributed to one or more of the following causes: (1) inhibition of pith recharge by subfreezing stem temperatures; (2) embolisms in stem xylem; (3) freezing injury to pith tissue. The results suggested that an insulating layer of marcescent leaves and the presence of an internal water reservoir closer to the rosette than the soil water are important adaptations for maintenance of a favourable water balance in tropical alpine habitats where freezing temperatures occur regularly but last only a few hours.  相似文献   

15.
The relationship between water temperature, growth rate, and otolith isotopic ratios was measured for juvenile plaice (Pleuronectes platessa) reared at two temperatures (11 and 17°C) and two feeding regimes (1 and 3 prey items·ml?1). The otolith isotope ratios in individual fish ranged from ?2 to ?4 for carbon isotope ratios (δ13C) and from 0.2 to 1.9 for oxygen isotope ratios (δ18O). The otolith oxygen isotope ratios were significantly affected by water temperature, but not by feeding level, and there were no significant synergistic effects. The fractionation of oxygen isotopes during otolith growth was independent of individual growth rate. Carbon isotope ratios were not significantly affected by food ration or water temperature, but were related to fish growth rate. The carbon isotope ratios were negatively correlated with fish length in the colder water treatments, and tended to increase with fish length in the warm water treatments. The laboratory-determined relationship between otolith oxygen isotope ratio and water temperature was applied to individuals of five species (plaice, cod, whiting, haddock, gurnard) collected in a single trawl sample. The otolith derived temperatures often overestimated measured water temperatures. The difference between real and estimated water temperatures varied between species, and the closest fit was for field-caught plaice.  相似文献   

16.
The behavioral thermoregulation of the red swamp crayfish, Procambarus clarki, was investigated in its burrow environment. In the field, air and water temperatures within crayfish burrows fluctuated less compared with surface temperatures in the Mojave Desert. However, crayfish could still experience sub-optimal temperature regimes inside burrows. In the laboratory, P. clarki heated and cooled more rapidly in water than in air. In a thermal gradient, the crayfish selected a water temperature of 22 degrees C and avoided water temperatures above 31 degrees C and below 12 degrees C. Observations of behavior in an artificial burrow showed that P. clarki displayed three main shuttling behaviors between water and air in response to temperature. The number of bilateral emersions and emigrations, as well as the amount of time spent in air (in a 24 h period), were significantly greater at 34 degrees C than at 12, 16, 22 or 28 degrees C. This reflected an increased use of the behavioral thermoregulation at temperatures approaching the critical thermal maximum of this species. Upon migrating from 34 degrees C water into 38 degrees C air, crayfish body temperature decreased significantly. These periods of emersion were interspersed with frequent dipping in the water, allowing the crayfish to gain the benefits of evaporative cooling, without the physiological costs incurred by long-term exposure to air.  相似文献   

17.
The metabolic and water evaporation strategies in spiders may be part of a set of physiological adaptations to tolerate low or unpredictable food availability, buffering spiders against environmental fluctuations such as those of the high mountains of the central Andes.The aim of this study is to analyze experimentally the variations in metabolic rate and the rate of evaporative water with food and/or water restriction in a high mountain mygalomorph spider population (Paraphysa sp.).We found that the low metabolism of this spider was not affected by water restriction, but its metabolism was depressed after 3 weeks of food deprivation. The spider did not show seasonal metabolic changes but it presented seasonal changes in the rate of evaporative water loss at high temperatures.Females with egg sacs reduced their metabolic rate and evaporative water at high temperatures.These findings constitute a set of possible adaptations to a highly fluctuating Mediterranean environment, which is completely covered with snow for many months and then progresses rapidly to a very dry climate with high temperatures.  相似文献   

18.
C H Hsieh  W G Wu 《Biophysical journal》1996,71(6):3278-3287
Deuterium NMR relaxation and intensity measurements of the 2H-labeled H2O/dimyristoyl phosphatidylcholine bilayer were performed to understand the molecular origin of the freezing event of phospholipid headgroup and the structure and dynamics of unfrozen water molecules in the interbilayer space at subzero temperatures. The results suggest that about one to two water molecules associated with the phosphate group freeze during the freezing event of phospholipid headgroups, whereas about five to six waters near the trimethylammonium group behave as a water cluster and remain unfrozen at temperatures as low as -70 degrees C. In addition, temperature-dependent T1 and T2 relaxation times suggest that dynamic coupling occurs not only between the phosphate group and its bound water, but also between the methyl group and the adjacent water molecules. Based on these observations, the primary hydration shell of phosphatidylcholine headgroup at subzero temperatures is suggested to consist of two distinct regions: a clathrate-like water cluster, most likely a water pentamer, near the hydrophobic methyl group, and hydration water molecules associated with the phosphate group.  相似文献   

19.
Pasteurization of naturally contaminated water with solar energy.   总被引:5,自引:3,他引:2       下载免费PDF全文
A solar box cooker (SBC) was constructed with a cooking area deep enough to hold several 3.7-liter jugs of water, and this was used to investigate the potential of using solar energy to pasteurize naturally contaminated water. When river water was heated either in the SBC or on a hot plate, coliform bacteria were inactivated at temperatures of 60 degrees C or greater. Heating water in an SBC to at least 65 degrees C ensures that the water will be above the milk pasteurization temperature of 62.8 degrees C for at least an hour, which appears sufficient to pasteurize contaminated water. On clear or partly cloudy days, with the SBC facing magnetic south in Sacramento, bottom water temperatures of at least 65 degrees C could be obtained in 11.1 liters of water during the 6 weeks on either side of the summer solstice, in 7.4 liters of water from mid-March through mid-September, and in 3.7 liters of water an additional 2 to 3 weeks at the beginning and end of the solar season. Periodic repositioning of the SBC towards the sun, adjusting the back reflective lid, and preheating water in a simple reflective device increased final water temperatures. Simultaneous cooking and heating water to pasteurizing temperatures was possible. Additional uses of the SBC to pasteurize soil and to decontaminate hospital materials before disposal in remote areas are suggested.  相似文献   

20.
Enhancement of Solar Water Pasteurization with Reflectors   总被引:3,自引:2,他引:1       下载免费PDF全文
A simple and reliable method that could be used in developing countries to pasteurize milk and water with solar energy is described. A cardboard reflector directs sunshine onto a black jar, heating water to pasteurizing temperatures in several hours. A reusable water pasteurization indicator verifies that pasteurization temperatures have been reached.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号