首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Store-operated cation (SOC) channels and capacitative Ca(2+) entry (CCE) play very important role in cellular function, but the mechanism of their activation remains one of the most intriguing and long lasting mysteries in the field of Ca(2+) signaling. Here, we present the first evidence that Ca(2+)-independent phospholipase A(2) (iPLA(2)) is a crucial molecular determinant in activation of SOC channels and store-operated Ca(2+) entry pathway. Using molecular, imaging, and electrophysiological techniques, we show that directed molecular or pharmacological impairment of the functional activity of iPLA(2) leads to irreversible inhibition of CCE mediated by nonselective SOC channels and by Ca(2+)-release-activated Ca(2+) (CRAC) channels. Transfection of vascular smooth muscle cells (SMC) with antisense, but not sense, oligonucleotides for iPLA(2) impaired thapsigargin (TG)-induced activation of iPLA(2) and TG-induced Ca(2+) and Mn(2+) influx. Identical inhibition of TG-induced Ca(2+) and Mn(2+) influx (but not Ca(2+) release) was observed in SMC, human platelets, and Jurkat T-lymphocytes when functional activity of iPLA(2) was inhibited by its mechanism-based suicidal substrate, bromoenol lactone (BEL). Moreover, irreversible inhibition of iPLA(2) impaired TG-induced activation of single nonselective SOC channels in SMC and BAPTA (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid)-induced activation of whole-cell CRAC current in rat basophilic leukemia cells. Thus, functional iPLA(2) is required for activation of store-operated channels and capacitative Ca(2+) influx in wide variety of cell types.  相似文献   

2.
Calcium (Ca2+) ionophores are the most effective agents able to elicit rapid membrane remodeling in vitro. This process exposes aminophospholipids at the surface of platelets and blood cells, thus providing a catalytic surface for coagulation. To explore the underlying mechanism, we examined if cytosolic Ca2+ ([Ca2+]i) increase through store-operated Ca2+ entry (SOCE) was necessary for the potent effect of ionophores. Recent studies have demonstrated that the Ca2+-ATPase inhibitor thapsigargin, although able to elevate [Ca2+]i through SOCE, does not trigger the rapid membrane remodeling. However, it was not known if the additional effect of ionophores to promote the process required SOCE or could it occur independently. We took advantage of two mutant B lymphoblast cell lines, characterized either by defective SOCE or altered membrane remodeling, to simultaneously assess [Ca2+]i increase and membrane remodeling in the presence of ionophores or thapsigargin. Results imply that ionophores trigger membrane remodeling without the requirement for a functional SOCE.  相似文献   

3.
In aged skeletal muscle, changes to the composition and function of the contractile machinery cannot fully explain the observed decrease in the specific force produced by the contractile machinery that characterizes muscle weakness during aging. Since modification in extracellular Ca2+ entry in aged nonexcitable and excitable cells has been recently identified, we evaluated the functional status of store-operated Ca2+ entry (SOCE) in aged mouse skeletal muscle. Using Mn2+ quenching of Fura-2 fluorescence and confocal-microscopic imaging of Ca2+ movement from the transverse tubules, we determined that SOCE was severely compromised in muscle fibers isolated from aged mice (26–27 months) as compared with those from young (2–5 months) mice. While reduced SOCE in aged skeletal muscle does not appear to result from altered expression levels of STIM1 or reduced expression of mRNA for Orai, this reduction in SOCE is mirrored in fibers isolated from young mice null for mitsugumin-29, a synaptophysin-related protein that displays decreased expression in aged skeletal muscle. Our data suggest that decreased mitsugumin-29 expression and reduced SOCE may contribute to the diminished intracellular Ca2+ homeostatic capacity generally associated with muscle aging.  相似文献   

4.
In many cell types membrane receptors for hormones or neurotransmitters activate a signal transduction pathway which releases Ca2+ from intracellular Ca2+ stores by the second messenger inositol 1,4,5-trisphosphate. As a consequence store-operated Ca2+ entry (SOCE) becomes activated. In the present study we addressed the question if receptor/agonist binding can modulate Ca2+ entry by mechanisms different from the store-operated one. Therefore SOCE was examined in HEK293 cells microscopically with the fura-2 technique and with patch clamp. We found that maximally preactivated SOCE could, concentration dependently, be reduced up to 80% by the muscarinic agonist acetylcholine when the cytoplasmic Ca2+ concentration was used as a measure. Muscarinic receptors seem to mediate this decrease since atropine blocked the effect completely and cell types without muscarinic receptors (BHK21, CHO) did not show acetylcholine-induced decrease of Ca2+ entry. Moreover expression of muscarinic receptor subtypes M1 and M3 in BHK21 cells established the muscarinic decrease of SOCE. Electrical measurements revealed that the membrane potential of HEK293 cells did not show any response to ACh, excluding that changes of driving forces are responsible for the block of Ca2+ entry. In contrast the electrical current which is responsible for SOCE in HEK293 cells (Ca2+ release-activated Ca2+ current (I(CRAC)) was inhibited (maximally 55%) by 10 microM ACh. From these data we conclude that in HEK293 cells a muscarinic signal transduction pathway exists which decreases the cytoplasmic Ca2+ concentration by an inhibition of I(CRAC). This mechanism may serve as a modulator of Ca2+ entry preventing a Ca2+ overload of the cytoplasm after Ca2+ store depletion.  相似文献   

5.
6.
Calcium (Ca2+) oscillations play fundamental roles in various cell signaling processes and have been the subject of numerous modeling studies. Here we have implemented a general mathematical model to simulate the impact of store-operated Ca2+ entry on intracellular Ca2+ oscillations. In addition, we have compared two different models of the inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) and their influences on intracellular Ca2+ oscillations. Store-operated Ca2+ entry following Ca2+ depletion of endoplasmic reticulum (ER) is an important component of Ca2+ signaling. We have developed a phenomenological model of store-operated Ca2+ entry via store-operated Ca2+ (SOC) channels, which are activated upon ER Ca2+ depletion. The depletion evokes a bi-phasic Ca2+ signal, which is also produced in our mathematical model. The IP3R is an important regulator of intracellular Ca2+ signals. This IP3 sensitive Ca2+ channel is also regulated by Ca2+. We apply two IP3R models, the Mak-McBride-Foskett model and the De Young and Keizer model, with significantly different channel characteristics. Our results show that the two separate IP3R models evoke intracellular Ca2+ oscillations with different frequencies and amplitudes. Store-operated Ca2+ entry affects the oscillatory behavior of these intracellular Ca2+ oscillations. The IP3 threshold is altered when store-operated Ca2+ entry is excluded from the model. Frequencies and amplitudes of intracellular Ca2+ oscillations are also altered without store-operated Ca2+ entry. Under certain conditions, when intracellular Ca2+ oscillations are absent, excluding store-operated Ca2+ entry induces an oscillatory response. These findings increase knowledge concerning store-operated Ca2+ entry and its impact on intracellular Ca2+ oscillations.  相似文献   

7.
Chronic hypoxia (CH)-induced pulmonary hypertension may influence basal endothelial cell (EC) intracellular Ca(2+) concentration ([Ca(2+)](i)). We hypothesized that CH decreases EC [Ca(2+)](i) associated with membrane depolarization and reduced Ca(2+) entry. To test this hypothesis, we assessed 1) basal endothelial Ca(2+) in pressurized pulmonary arteries and freshly isolated ECs, 2) EC membrane potential (E(m)), 3) store-operated Ca(2+) current (I(SOC)), and 4) store-operated Ca(2+) (SOC) entry in arteries from control and CH rats. We found that basal EC Ca(2+) was significantly lower in pressurized pulmonary arteries and freshly isolated ECs from CH rats compared with controls. Similarly, ECs in intact arteries from CH rats were depolarized compared with controls, although no differences were observed between groups in isolated cells. I(SOC) activation by 1 muM thapsigargin displayed diminished inward current and a reversal potential closer to 0 mV in cells from CH rats compared with controls. In addition, SOC entry determined by fura 2 fluorescence and Mn(2+) quenching revealed a parallel reduction in Ca(2+) entry following CH. We conclude that differences in the magnitude of SOC entry exist between freshly dispersed ECs from CH and control rats and correlates with the decrease in basal EC [Ca(2+)](i). In contrast, basal EC Ca(2+) influx is unaffected and membrane depolarization is limited to intact arteries, suggesting that E(m) may not play a major role in determining basal EC [Ca(2+)](i) following CH.  相似文献   

8.
Infections caused by certain bacteria including Mycobacterium tuberculosis and Corynebacterium pseudotuberculosis provoke inflammatory responses characterized by the formation of granulomas with necrotic foci—so-called caseous necrosis. The granulomas of infected animals show prominent infiltration by T lymphocytes, and T cell depletion increases host mortality. Notorious zoonotic C. pseudotuberculosis secretes sphingomyelinase (SMase) D, a phospholipase that cleaves off the choline moiety of sphingomyelin, a phospholipid found primarily in the outer leaflet of host cell plasma membranes. Experimental C. pseudotuberculosis strains that lack SMase D are markedly less infectious and unable to spread in hosts, indicating that this enzyme is a crucial virulence factor for sustaining the caseous lymphadenitis infections caused by this microbe. However, the molecular mechanism by which SMase D helps bacteria evade the host’s immune response remains unknown. Here, we find that SMase D inhibits store-operated Ca2+ entry (SOCE) in human T cells and lowers the production of the SOCE-dependent cytokines interleukin-2, which is critical for T cell growth, proliferation, and differentiation, and tumor necrosis factor α, which is crucial for the formation and maintenance of granulomas in microbial infections. SMase D inhibits SOCE through a previously unknown mechanism, namely, suppression of Orai1 current, rather than through altering gating of voltage-gated K+ channels. This finding suggests that, whereas certain genetic mutations abolish Orai1 activity causing severe combined immunodeficiency (SCID), bacteria have the ability to suppress Orai1 activity with SMase D to create an acquired, chronic SCID-like condition that allows persistent infection. Thus, in an example of how virulence factors can disrupt key membrane protein function by targeting phospholipids in host cell membranes, our study has uncovered a novel molecular mechanism that bacteria can use to thwart host immunity.  相似文献   

9.
The IP3R (inositol 1,4,5-trisphosphate receptor) releases Ca2+ from the ER (endoplasmic reticulum) store upon binding to its ligand InsP3, which is thought to be generated by activation of certain membrane-bound G-protein-coupled receptors in Drosophila. Depletion of Ca2+ in the ER store also activates SOCE (store-operated Ca2+ entry) from the extracellular milieu across the plasma membrane, leading to a second rise in cytosolic Ca2+, which is then pumped back into the ER. The role of the IP3R and SOCE in mediating Ca2+ homoeostasis in neurons, their requirement in neuronal function and effect on neuronal physiology and as a consequence behaviour, are reviewed in the present article.  相似文献   

10.
Capacitative calcium entry (CCE), the mechanism that replenishes the internal Ca2+ stores with Ca2+ from the extracellular milieu in response to depletion of the store, is mediated by Ca2+ channels in the plasma membrane generally referred to as store-operated channels (SOCs). However, the roles of SOCs in the more physiological context have been fully elucidated. 2-Aminoethyl diphenylborinate (2-APB) strongly inhibits SOCs, as well as inositol-1,4,5 trisphosphate (IP3) receptors. In the present study, we screened a library of 166 2-APB analogues for effects on CCE and IP3-induced Ca2+ release in order to discover specific SOC inhibitors, and found that some blocked both store-operated and receptor-operated Ca2+ influx more strongly and selectively than 2-APB. Indeed, these new compounds ceased the prolonged intracellular Ca2+ oscillations induced by a low concentration of ATP in CHO-K1 cells. These novel SOC inhibitors will be valuable pharmacological and biochemical tools for elucidating the physiological roles.  相似文献   

11.
Ca2+ signaling plays a central role in microglial activation, and several studies have demonstrated a store-operated Ca2+ entry (SOCE) pathway to supply this ion. Due to the rapid pace of discovery of novel Ca2+ permeable channels, and limited electrophysiological analyses of Ca2+ currents in microglia, characterization of the SOCE channels remains incomplete. At present, the prime candidates are ‘transient receptor potential’ (TRP) channels and the recently cloned Orai1, which produces a Ca2+-release-activated Ca2+ (CRAC) current. We used cultured rat microglia and real-time RT-PCR to compare expression levels of Orai1, Orai2, Orai3, TRPM2, TRPM7, TRPC1, TRPC2, TRPC3, TRPC4, TRPC5, TRPC6 and TRPC7 channel genes. Next, we used Fura-2 imaging to identify a store-operated Ca2+ entry (SOCE) pathway that was reduced by depolarization and blocked by Gd3+, SKF-96365, diethylstilbestrol (DES), and a high concentration of 2-aminoethoxydiphenyl borate (50 μM 2-APB). The Fura-2 signal was increased by hyperpolarization, and by a low concentration of 2-APB (5 μM), and exhibited Ca2+-dependent potentiation. These properties are entirely consistent with Orai1/CRAC, rather than any known TRP channel and this conclusion was supported by patch-clamp electrophysiological analysis. We identified a store-operated Ca2+ current with the same properties, including high selectivity for Ca2+ over monovalent cations, pronounced inward rectification and a very positive reversal potential, Ca2+-dependent current potentiation, and block by SKF-96365, DES and 50 μM 2-APB. Determining the contribution of Orai1/CRAC in different cell types is crucial to future mechanistic and therapeutic studies; this comprehensive multi-strategy analysis demonstrates that Orai1/CRAC channels are responsible for SOCE in primary microglia.  相似文献   

12.
13.
Mitochondria exert important control over plasma membrane (PM) Orai1 channels mediating store-operated Ca2+ entry (SOCE). Although the sensing of endoplasmic reticulum (ER) Ca2+ stores by STIM proteins and coupling to Orai1 channels is well understood, how mitochondria communicate with Orai1 channels to regulate SOCE activation remains elusive. Here, we reveal that SOCE is accompanied by a rise in cytosolic Na+ that is critical in activating the mitochondrial Na+/Ca2+ exchanger (NCLX) causing enhanced mitochondrial Na+ uptake and Ca2+ efflux. Omission of extracellular Na+ prevents the cytosolic Na+ rise, inhibits NCLX activity, and impairs SOCE and Orai1 channel current. We show further that SOCE activates a mitochondrial redox transient which is dependent on NCLX and is required for preventing Orai1 inactivation through oxidation of a critical cysteine (Cys195) in the third transmembrane helix of Orai1. We show that mitochondrial targeting of catalase is sufficient to rescue redox transients, SOCE, and Orai1 currents in NCLX-deficient cells. Our findings identify a hitherto unknown NCLX-mediated pathway that coordinates Na+ and Ca2+ signals to effect mitochondrial redox control over SOCE.  相似文献   

14.
Sigma1 receptors (σ1Rs) are expressed widely; they bind diverse ligands, including psychotropic drugs and steroids, regulate many ion channels, and are implicated in cancer and addiction. It is not known how σ1Rs exert such varied effects. We demonstrate that σ1Rs inhibit store-operated Ca2+ entry (SOCE), a major Ca2+ influx pathway, and reduce the Ca2+ content of the intracellular stores. SOCE was inhibited by expression of σ1R or an agonist of σ1R and enhanced by loss of σ1R or an antagonist. Within the endoplasmic reticulum (ER), σ1R associated with STIM1, the ER Ca2+ sensor that regulates SOCE. This interaction was modulated by σ1R ligands. After depletion of Ca2+ stores, σ1R accompanied STIM1 to ER–plasma membrane (PM) junctions where STIM1 stimulated opening of the Ca2+ channel, Orai1. The association of STIM1 with σ1R slowed the recruitment of STIM1 to ER–PM junctions and reduced binding of STIM1 to PM Orai1. We conclude that σ1R attenuates STIM1 coupling to Orai1 and thereby inhibits SOCE.  相似文献   

15.
During an agonist stimulation of endothelial cells, the sustained Ca2+ entry occurring through store-operated channels has been shown to significantly contribute to smooth muscle relaxation through the release of relaxing factors such as nitric oxide (NO). However, the mechanisms linking Ca2+ stores depletion to the opening of such channels are still elusive. We have used Ca2+ and tension measurements in intact aortic strips to investigate the role of the Ca2+-independent isoform of phospholipase A2 (iPLA2) in endothelial store-operated Ca2+ entry and endothelium-dependent relaxation of smooth muscle. We provide evidence that iPLA2 is involved in the activation of endothelial store-operated Ca2+ entry when Ca2+ stores are artificially depleted. We also show that the sustained store-operated Ca2+ entry occurring during physiological stimulation of endothelial cells with the circulating hormone ATP is due to iPLA2 activation and significantly contributes to the amplitude and duration of ATP-induced endothelium-dependent relaxation. Consistently, both iPLA2 metabolites arachidonic acid and lysophosphatidylcholine were found to stimulate Ca2+ entry in native endothelial cells. However, only the latter triggered endothelium-dependent relaxation through NO release, suggesting that lysophosphatidylcholine produced by iPLA2 upon Ca2+ stores depletion may act as an intracellular messenger that stimulates store-operated Ca2+ entry and subsequent NO production in endothelial cells. Finally, we found that ACh-induced endothelium relaxation also depends on iPLA2 activation, suggesting that the iPLA2-dependent control of endothelial store-operated Ca2+ entry is a key physiological mechanism regulating arterial tone.  相似文献   

16.
We recently reported that store-operated Ca2+ entry (SOCE) in nonexcitable cells is likely to be mediated by a reversible interaction between Ca2+ channels in the plasma membrane and the endoplasmic reticulum, a mechanism known as "secretion-like coupling." As for secretion, in this model the actin cytoskeleton plays a key regulatory role. In the present study we have explored the involvement of the secretory proteins synaptosome-associated protein (SNAP-25) and vesicle-associated membrane protein (VAMP) in SOCE in pancreatic acinar cells. Cleavage of SNAP-25 and VAMPs by treatment with botulinum toxin A (BoNT A) and tetanus toxin (TeTx), respectively, effectively inhibited amylase secretion stimulated by the physiological agonist CCK-8. BoNT A significantly reduced Ca2+ entry induced by store depletion using thapsigargin or CCK-8. In addition, treatment with BoNT A once SOCE had been activated reduced Ca2+ influx, indicating that SNAP-25 is needed for both the activation and maintenance of SOCE in pancreatic acinar cells. VAMP-2 and VAMP-3 are expressed in mouse pancreatic acinar cells. Both proteins associate with the cytoskeleton upon Ca2+ store depletion, although only VAMP-2 seems to be sensitive to TeTx. Treatment of pancreatic acinar cells with TeTx reduced the activation of SOCE without affecting its maintenance. These findings support a role for SNAP-25 and VAMP-2 in the activation of SOCE in pancreatic acinar cells and show parallels between this process and secretion in a specialized secretory cell type. synaptosome-associated protein; vesicle-associated membrane protein; pancreatic acinar cells; cytoskeleton; calcium entry  相似文献   

17.
G H Brough  S Wu  D Cioffi  T M Moore  M Li  N Dean  T Stevens 《FASEB journal》2001,15(10):1727-1738
Heterologous expression of the transient receptor potential-1 gene product (Trp1) encodes for a Ca2+ entry pathway, though it is unclear whether endogenous Trp1 contributes to a selective store-operated Ca2+ entry current. We examined the role of Trp1 in regulating both store-operated Ca2+ entry and a store-operated Ca2+ entry current, I(SOC), in A549 and endothelial cells. Twenty different 'chimeric' 2'-O-(2-methoxy)ethylphosphothioate antisense oligonucleotides were transfected separately using cationic lipids and screened for their ability to inhibit Trp1 mRNA. Two hypersensitive regions were identified, one at the 5' end of the coding region and the second in the 3' untranslated region beginning six nucleotides downstream of the stop codon. Antisense oligonucleotides stably decreased Trp1 at concentrations ranging from 10 to 300 nM, for up to 72 h. Thapsigargin increased global cytosolic Ca2+ and activated a I(SOC), which was small (-35 pA @ -80 mV), reversed near +40 mV, inhibited by 50 microM La3+, and exhibited anomalous mole fraction dependence. Inhibition of Trp1 reduced the global cytosolic Ca(2+) response to thapsigargin by 25% and similarly reduced I(SOC) by 50%. These data collectively support a role for endogenously expressed Trp1 in regulating a Ca2+-selective current activated upon Ca2+ store depletion.  相似文献   

18.
The nematode Caenorhabditis elegans offers significant experimental advantages for defining the genetic basis of diverse biological processes. Genetic and physiological analyses have demonstrated that inositol-1,4,5-trisphosphate (IP3)-dependent Ca2+ oscillations in intestinal epithelial cells play a central role in regulating the nematode defecation cycle, an ultradian rhythm with a periodicity of 45-50 s. Patch clamp studies combined with behavioral assays and forward and reverse genetic screening would provide a powerful approach for defining the molecular details of oscillatory Ca2+ signaling. However, electrophysiological characterization of the intestinal epithelium has not been possible because of its relative inaccessibility. We developed primary intestinal epithelial cell cultures that circumvent this problem. Intestinal cells express two highly Ca2+-selective, voltage-independent conductances. One conductance, IORCa, is constitutively active, exhibits strong outward rectification, is 60-70-fold more selective for Ca2+ than Na+, is inhibited by intracellular Mg2+ with a K1/2 of 692 microM, and is insensitive to Ca2+ store depletion. Inhibition of IORCa with high intracellular Mg2+ concentrations revealed the presence of a small amplitude conductance that was activated by passive depletion of intracellular Ca2+ stores. Active depletion of Ca2+ stores with IP3 or ionomycin increased the rate of current activation approximately 8- and approximately 22-fold compared with passive store depletion. The store-operated conductance, ISOC, exhibits strong inward rectification, and the channel is highly selective for Ca2+ over monovalent cations with a divalent cation selectivity sequence of Ca2+ > Ba2+ approximately Sr2+. Reversal potentials for ISOC could not be detected accurately between 0 and +80 mV, suggesting that PCa/PNa of the channel may exceed 1,000:1. Lanthanum, SKF 96365, and 2-APB inhibit both IORCa and ISOC reversibly. Our studies provide the first detailed electrophysiological characterization of voltage-independent Ca2+ conductances in C. elegans and form the foundation for ongoing genetic and molecular studies aimed at identifying the genes that encode the intestinal cell channels, for defining mechanisms of channel regulation and for defining their roles in oscillatory Ca2+ signaling.  相似文献   

19.
Ca2+-induced Ca2+ release (CICR) is a well characterized activity in skeletal and cardiac muscles mediated by the ryanodine receptors. The present study demonstrates CICR in the non-excitable parotid acinar cells, which resembles the mechanism described in cardiac myocytes. Partial depletion of internal Ca2+ stores leads to a minimal activation of Ca2+ influx. Ca2+ influx through this pathway results in an explosive mobilization of Ca2+ from the majority of the stores by CICR. Thus, stimulation of parotid acinar cells in Ca2+ -free medium with 0.5 microm carbachol releases approximately 5% of the Ca2+ mobilizable by 1 mm carbachol. Addition of external Ca2+ induced the same Ca2+ release observed in maximally stimulated cells. Similar results were obtained by a short treatment with 2.5-10 microm cyclopiazonic acid, an inhibitor of the sarco/endoplasmic reticulum Ca2+ ATPase pump. The Ca2+ release induced by the addition of external Ca2+ was largely independent of IP(3)Rs because it was reduced by only approximately 30% by the inhibition of the inositol 1,4,5-trisphosphate receptors with caffeine or heparin. Measurements of Ca2+ -activated outward current and [Ca2+](i) suggested that most CICR triggered by Ca2+ influx occurred away from the plasma membrane. Measurement of the response to several concentrations of cyclopiazonic acid revealed that Ca2+ influx that regulates CICR is associated with a selective portion of the internal Ca2+ pool. The minimal activation of Ca2+ influx by partial store depletion was confirmed by the measurement of Mn2+ influx. Inhibition of Ca2+ influx with SKF96365 or 2-aminoethoxydiphenyl borate prevented activation of CICR observed on addition of external Ca2+. These findings provide evidence for activation of CICR by Ca2+ influx in non-excitable cells, demonstrate a previously unrecognized role for Ca2+ influx in triggering CICR, and indicate that CICR in non-excitable cells resembles CICR in cardiac myocytes with the exception that in cardiac cells Ca2+ influx is mediated by voltage-regulated Ca2+ channels whereas in non-excitable cells Ca2+ influx is mediated by store-operated channels.  相似文献   

20.
Wu MM  Luik RM  Lewis RS 《Cell calcium》2007,42(2):163-172
The means by which Ca(2+) store depletion evokes the opening of store-operated Ca(2+) channels (SOCs) in the plasma membrane of excitable and non-excitable cells has been a longstanding mystery. Indirect evidence has supported local interactions between the ER and SOCs as well as long-range interactions mediated through a diffusible activator. The recent molecular identification of the ER Ca(2+) sensor (STIM1) and a subunit of the CRAC channel (Orai1), a prototypic SOC, has now made it possible to visualize directly the sequence of events that links store depletion to CRAC channel opening. Following store depletion, STIM1 moves from locations throughout the ER to accumulate in ER subregions positioned within 10-25nm of the plasma membrane. Simultaneously, Orai1 gathers at discrete sites in the plasma membrane directly opposite STIM1, resulting in local CRAC channel activation. These new studies define the elementary units of store-operated Ca(2+) entry, and reveal an unprecedented mechanism for channel activation in which the stimulus brings a channel and its activator/sensor together for interaction across apposed membrane compartments. We discuss the implications of this choreographic mechanism with regard to Ca(2+) dynamics, specificity of Ca(2+) signaling, and the existence of a specialized ER subset dedicated to the control of the CRAC channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号