首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of a variety of ions and other solutes on the accumulation of the β-amino acid, taurine, was examined in rat renal brush-border membrane vesicles. Initial taurine uptake (15 and 30 s) is sodium-dependent with a typical overshoot. This Na+ effect was confirmed by exchange diffusion and gramicidin inhibition of taurine uptake. External K+ or Li+ do not increase taurine accumulation more than Na+-free mannitol, except that the combination of external K+ and Na1 in the presence of nigericin enhances uptake. Of all anions tested, including more permeant (SCN and NO3) or less permeant (SO42−), chloride supported taurine accumulation to a significantly greater degree. Preloading vesicles with choline chloride reduced taurine uptake, suggesting that external Cl stimulates uptake. Since this choline effect could be related to volume change, due to the slow diffusion of choline into vesicles, brush-border membrane vesicles were pre-incubated with LiCl, LiNO3 and LiSO4. Internal LiCl, regardless of the final Na+ anion mixture, reduced initial rate (15 and 60 s) and peak (360 s) taurine uptake. Internal LiNO3 or LiSO4 with external NaCl resulted in similar or higher values of uptake at 15, 60 and 360 s, indicating a role for external Cl in taurine uptake in addition to Na+ effect. Although uptake by vesicles is greatest at pH 8.0 and inhibited at acidic pH values (pH less than 7.0), an externally directed H+ gradient does not influence uptake. Similarly, amiloride, an inhibitor of the Na+/H+ antiporter, had no influence on taurine accumulation over a wide variety of concentrations or at low Na+ concentrations. Taurine uptake is blocked only by other β-amino acids and in a competitive fashion. d-glucose and p-aminohippurate at high concentrations (> 10−3 M) reduce taurine uptake, possibly by competing for sodium ions, although gramicidin added in the presence of d-glucose inhibits taurine uptake even further. These studies more clearly define the nature of the renal β-amino acid transport system in brush-border vesicles and indicate a role for external Cl in this uptake system.  相似文献   

2.
The effects of metabolic and protein synthesis inhibitors on NH4 + uptake by Pisum arvense plants at low (0.05 mM) and high (1 mM) external ammonium concentration were studied. In short-time experiments cycloheximide decreased the ammonium uptake rate at low level of NH4 + and increased the absorption of NH4 + from uptake medium containing high ammonium concentration. Arsenate and azide supplied into uptake solutions at low ammonium concentration strongly decreased or completely suppressed the NH4 + uptake rate, respectively. When the experiments were carried out at high level of ammonium only azide decreased the uptake rate of NH4 + and arsenate stimulated this process. Dinitrophenol very strongly repressed the uptake rate of NH4 + at both ammonium concentrations. After removing dinitrophenol from both solutions, neither at low nor high external ammonium level the recovery of NH4 + uptake rate was achieved within 150 min or 3 h, respectively. The recovery of NH4 + uptake rate after removing azide was observed within 90 min and 3 h at low and high ammonium concentrations, respectively. The regulation of NH4 + uptake by some inhibitors at low external ammonium level was investigated using plasma membrane vesicles isolated from roots by two-phase partitioning. Orthovanadate completely suppressed the uptake of NH4 + by vesicles and quinacrine decreased the NH4 + uptake which 55 suggests that ammonium uptake depends on activities of plasma membrane-bound enzymes. On the other hand, it was found that dinitrophenol completely reduced the NH4 + uptake by vesicles. The various effects of inhibitors on ammonium uptake dependent on external ammonium concentration suggest the action of different ammonium transport systems in Pisum arvense roots. The ammonium transport into root cells at low NH4 + level requires energy and synthesis of protein in the cytoplasm. The research was supported by grant of KBN No. 6PO4C 068 08  相似文献   

3.
Summary Choline is a quaternary ammonium compound that is normally reabsorbed by the renal proximal tubule, despite its acknowledged role as a substrate for the renal organic cation (OC) secretory pathway. The basis for choline reabsorption was examined in studies of transport in rabbit renal brush-border membrane vesicles (BBMV). Although an outwardly directed H+ gradient (pH 6.0in 7.5out) stimulated uptake of tetraethylammonium (TEA), a model substrate of the OC/H+ exchanger in renal BBMV, it had no effect on uptake of 1 m choline. A 5 mm trans concentration gradient of choline did, however, drive countertransport of both TEA and choline, although trans TEA had no effect on choline accumulation in BBMV. A 20 mm concentration of unlabeled choline blocked uptake of both choline and TEA by >85%, whereas 20 mm TEA blocked only TEA uptake. The kinetics of choline uptake into vesicles preloaded with 1 mm unlabeled choline appeared to involve two, saturable transport processes, one of high affinity for choline (K t of 97 m) and a second of low affinity (K t of 10 mm), the latter presumably reflecting a weak interaction of choline with the OC/H+ exchanger. An inside-negative electrical PD stimulated the rate of uptake and supported the transient concentrative accumulation of choline in BBMV. The high affinity transporter showed a marked specificity for choline and closely related analogues. A model of the molecular determinants of substrate-transporter interaction is described. We conclude that the electrogenic high affinity pathway plays a central role in renal reabsorption of choline.We thank Dr. William Dantzler for helpful discussions. This work was supported by grants from the National Institutes of Health (PO1 DK41006) and the Arizona Disease Control Research Commission (82-0701).  相似文献   

4.
Blood-brain barrier (BBB) transport of choline and certain choline analogs was studied in adult and suckling rats, and additionally compared in the paleocortex and neocortex of adult rats. Saturable uptake was characterized by a single kinetic system in all cases examined, and in adult rat forebrains we determined a Km= 442 ± 60 μM and Vmax= 10.0 ± 0.6 nmol min-1 g-1. In 14–15-day-old suckling forebrains a similar Km (= 404 ± 88 μM) but higher Vmax (= 12.5 ± 1.5 nmol min-1 g-1) was determined. When choline uptake was compared in two regions of the forebrain, similar Michaelis-Menten constants were determined but a higher uptake velocity was found in the neocortex (i.e. neocortex Km= 310 ± 103 μM and Vmax= 12.6 ± 2.8 nmol min-1g-1; paleocortex Km= 217 ± 76 μM and Vmax= 7.2 ± 1.5 nmol min-1 g-1). Administration of radiolabelled choline at low (5 μM) and high (100 μM) concentrations, followed by microwave fixation 60 s later and chloroform-methanol-water separations of the homogenized brain did not suggest a relationship between concentration and the appearance of label in lipid or aqueous fractions as observed in another in-vitro study elaborating two-component kinetics of choline uptake. It was observed that 60s after carotid injection 12–14% of the radiolabel in the ipsilateral cortex was found in the chloroform-soluble fraction. Hemicholinium-3 (Ki= 111 μM), dimethylaminoethanol (Ki= 42 μM), tetraethyl ammonium chloride, tetramethyl ammonium chloride, 2-hydroxyethyl triethylammonium iodide, carnitine, normal rat serum, and to a lesser extent lithium and spermidine all inhibited choline uptake in the BBB. Unsubstituted ammonium chloride and imipramine did not inhibit choline uptake. No difference was observed in blood-brain barrier choline uptake of unanesthetised, carotid artery-catheterized animals, and comparable sodium pentobarbital-anesthetized controls.  相似文献   

5.
The inhibitory effect of a phenyl group in quaternary ammonium compounds on thiamine uptake in isolated rat hepatocytes was investigated. The phenyltrimethylammonium ion was a more potent inhibitor than the tetramethylammonium ion, while the dibenzyldimethylammonium ion was the most potent inhibitor of thiamine uptake among those compounds examined. A kinetic study showed that this compound was a competitive inhibitor. The cetyltrimethylammonium ion was a less effective inhibitor than the benzyltrimethylammonium ion, and the palmitoylcholine ion was a weak inhibitor. These results indicate that the lipophilicity of a quaternary ammonium compound is not always correlated with its affinity for thiamine-carrier binding, but the presence of a phenyl group plays a significant role in affinity. The inhibitory effect of the series of (CH3)3N+(CH2)nC6H5 (n = 0−6) compounds on thiamine uptake in isolated rat hepatocytes was studied. The maximal inhibitory activity occurred at n = 5. These results suggest that the phenyl group in a quaternary ammonium compound has a specific interaction with the thiamine-binding site in rat liver plasma membrane.  相似文献   

6.
The uptake of 3H-labeled choline by a suspension of isolated type II epithelial cells from rat lung has been studied in a Ringer medium. Uptake was linear for 4 min at both 0.1 μm and 5.0 μm medium choline; at 5 μm, only 10% of the label was recovered in a lipid fraction. Further experiments were conducted at the low concentration (0.1 μm), permitting characterization of the properties of high-affinity systems. Three fractions of choline uptake were detected: (i) a sodium-dependent system that was totally inhibited by hemicholinium-3 (HC-3); (ii) a sodium-independent uptake, when Na+ was replaced by Li+, K+ or Mg2+, inhibited by HC-3; (iii) a residual portion persisting in the absence of Na+ and unaffected by HC-3. Choline uptake was sigmoidally related to the medium Na+ concentration. Kinetic properties of the uptake of 0.1 μm 3H-choline in the presence and absence of medium Na+ were examined in two ways. (a) Inhibition by increasing concentrations of unlabeled choline (0.5–100 μm) was consistent with the presence of two Michaelis-Menten-type systems in the presence of Na+; a Na+-dependent portion (a mean of 0.52 of the total) had a K m for choline of 1.5 μm while K m in the absence of Na+ (Li+ substituting) was 18.6 μm. (b) Inhibition by HC-3 (0.3–300 μm) gave Ki values of 1.7 μm and 5.0 μm HC-3 for the Na+-dependent and -independent fractions. The apparent K m of the Na+-dependent uptake is lower than that reported previously for lung-derived cells and is in the range of the K m values reported for high-affinity, Na+-dependent choline uptake by neuronal cells. Received: 18 February 1997/Revised: 7 December 1997  相似文献   

7.
The chemiluminescence intensity of 1,2‐di[3,4,5‐tri(3,4,5‐trihydroxybenzoyloxy)benzoyloxy] benzene increased in the presence of quaternary ammonium ions, such as acetylcholine chloride, choline chloride or benzyltrimethylammonium chloride. The complex of 1,2‐di[3,4,5‐tri(3,4,5‐trihydroxybenzoyloxy)benzoyloxy] benzene with acetylcholine chloride, choline chloride or benzyltrimethylammonium chloride was investigated by 1H‐NMR spectroscopy. The structure of the complex formed from 1,2‐di[3,4,5‐tri(3,4,5‐trihydroxybenzoyloxy)benzoyloxy] benzene with choline chloride was described by an ab initio quantum chemical calculation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
HIGH AFFINITY CHOLINE UPTAKE: IONIC AND ENERGY REQUIREMENTS   总被引:20,自引:19,他引:1  
Abstract— High affinity choline uptake into rat hippocampal synaptosomes was examined at 37°C when various ions were deleted from normal Kreb's-Ringer media. When sodium chloride was replaced by sucrose, lithium chloride, cesium chloride or rubidium chloride, choline uptake was markedly reduced. When the sodium concentrations of the Kreb's media were gradually reduced to zero, the uptake was gradually reduced in parallel. A kinetic analysis performed at low and normal sodium concentrations revealed changes in Km and Vmax values. When several non-chloride sodium salts were utilized, the uptake was reduced in all cases suggesting also a chloride-dependence in addition to the sodium-dependence. Omission of calcium chloride or magnesium sulfate from the media did not alter uptake. Sodium-dependent choline uptake was examined over a range of potassium concentrations (0–35 DIM). It was found that uptake was maximal between potassium concentrations of 0.35–4.8 mm but was reduced at both lower and higher potassium concentrations. The kinetics of uptake were examined under varying potassium concentrations, and at low potassium, only a change in Vmax was observed while at high potassium concentrations, there were changes in both Km and Vmax values. Preincubation and incubation of synaptosomes with 0.1 m -ouabain, 0.1 mm -2,4-dinitrophenol and 1 mm -KCN caused a reduction in sodium-dependent uptake. When dextrose was omitted from the preincubation and incubation media there was also a reduction in sodium-dependent uptake. By contrast, the sodium-independent uptake was unaffected by the metabolic inhibitors or omission of dextrose, and had a very low Q10. When various incubation temperatures were utilized in uptake experiments, the Q10 for the interval 37-27°C was 2.7 and the activation energy was 22.7 kcal/mol. Slightly different ionic dependences were observed when animals pretreated with pentobarbital of oentylenetetrazol were utilized as the source of synaptosomes.  相似文献   

9.
Abstract— The swelling of intact, exposed primate cerebral cortex perfused in vioo under, isosmotic conditions was a linear function of the concentration of K+ in perfusate over the range 25–117 mM. The K+-dependent swelling was manifested throughout the depth of the cerebral cortex studied and was associated with an increased content of chloride in the swollen tissue, despite the constancy of the concentration of external chloride. The swelling of the cerebral cortex was a linear function of the temperature of the perfusate over the range 15–38°C, despite the constancy of the concentration of external K+. Moreover, the content of chloride in the swollen cerebral cortex was a linear function of the temperature of the overlying perfusate, despite the constancy of the external concentration of chloride. The changes in the contents of Na+ and K+ in the swollen cerebral cortex perfused with solutions containing constant concentrations of external Na+ and K+ but differing in temperature suggested that the fluid of swelling in the tissue was rich in both K+ and CI-, as had been shown previously in vitro. Perfusion of the exposed, intact cerebral cortex in uiuo with K+-rich fluids usually involved the reciprocal reduction of the concentrations of Na+ in the perfusate to maintain isotonicity. When comparable reductions in the concentration of external Na+ were achieved by replacement with choline (instead of K+), swelling of the perfused, exposed cortex was significantly less than that attributed to isotonic, K+-rich but Na+-poor fluids. These observations suggested that it was the elevated levels of K+ rather than lowered concentrations of Na+ that promoted the swelling of the perfused cerebral cortex. The apparent rate of influx of 36Cl from the perfusate into the underlying exposed and intact monkey cerebral cortex in vivo was a linear function of the concentration of K+ in perfusate over the range 25–117 mM and conformed to Michaelis-Menten kinetics when plotted according to Lineweaver and Burk. Moreover, the apparent influx of chloride from perfusate into swollen cerebral cortex was a linear function of the percentage swelling of cerebral cortex over the range 6–30 per cent. However, the apparent rate of influx of chloride from perfusate into unswollen cortex was not consistent with the linear correlation already described for swollen cerebral cortex. One reason for this discrepancy was the reduction in the size of the true (inulin) extracellular space associated with the K+-dependent swelling of cerebral cortex in vivo. The anatomical locus for this K+-dependent swelling of cerebral cortex was an expanded glial compartment, as demonstrated by electron-microscopy. The parenteral administration (50 mg/kg) or local perfusion (5 mM) of acetazolamide inhibited the K+-dependent swelling of cerebral cortex in vivo. Moreover, administration of acetazolamide inhibited the K+-dependent increase in content of C1- and the K+-dependent rate of influx of 36Cl into swollen cerebral cortex. We have discussed the possible enzymatic basis of these K+-dependent alterations in content of fluid and chloride and transport of chloride in mammalian cerebral cortex in viuo.  相似文献   

10.
Our study concerns the effects of exposure to lead chloride on the morphology, K+ efflux, SO4 ? influx and GSH levels of the human erythrocyte. Blood was collected in heparinized tubes and washed three times. The cells were suspended at 3% hematocrit and incubated for 1 h at 25°C in a medium containing increasing concentrations of lead chloride (0, 0.3, 0.5 and 1 ??M). After incubation, the suspensions were centrifuged and the erythrocyte pellets were divided into three aliquots for testing. The results show: an increase in the permeability of erythrocytes treated with lead chloride with consequent damage and cellular death, especially in the presence of high concentrations; an increase in potassium ion efflux; alterations in the morphology and membrane structure of the red blood cells; and a decrease in sulphate uptake, due either to the oxidative effect of this compound on the band 3 protein, which loses its biological valence as a carrier of sulphate ions, or to a decrease in the ATP erythrocyte concentration. In conclusion, the exposure of erythrocytes to Pb2+ ions leads to a reduction in the average lifetime of the erythrocytes and the subsequent development of anemia. These data are discussed in terms of the possible effect of lead on the reduction-oxidation systems of the cell. Oxidant agents, such as lead, are known to cross-link integral membrane proteins, leading to K/Cl-cotransport. The increased K+ efflux affects the altered redox state.  相似文献   

11.
The uptake of glycine,l-aspartic acid andl-lysine at pH 5 was not systematically affected by the presence of up to 0.1m NaCl or KCl, without or with 0.3mm actidione. The observed effects, either positively or negatively altering the rate of amino acid uptake, depended on the concentration of the ion but were always qualitatively the same for Na+ and K+. The inhibition prevailing with 0.1m ions was significantly more pronounced with Na+ than with K+. The presence of other anions (phosphate, nitrate, sulphate) had a slight but significant effect on uptake as compared with the variant using chloride. It is concluded that inSaccharomyces cerevisiae the transport of amino acids is not essentially coupled with the transport of different ions.  相似文献   

12.
Quaternary ammonium ions were applied to the inside of single myelinated nerve fibers by diffusion from a cut end. The resulting block of potassium channels in the node of Ranvier was studied under voltage-clamp conditions. The results agree in almost all respects with similar studies by Armstrong of squid giant axons. With tetraethylammonium ion (TEA), pentyltriethylammonium ion (C5), or nonyltriethylammonium ion (C9) inside the node, potassium current during a depolarization begins to rise at the normal rate, reaches a peak, and then falls again. This unusual inactivation is more complete with C9 than with TEA. Larger depolarizations give more block. Thus the block of potassium channels grows with time and voltage during a depolarization. The block reverses with repolarization, but for C9 full reversal takes seconds at -75 mv. The reversal is faster in 120 mM KCl Ringer''s and slower during a hyperpolarization to -125 mv. All of these effects contrast with the time and voltage-independent block of potassium, channels seen with external quaternary ammonium ions on the node of Ranvier. External TEA, C5, and C9 block without inactivation. The external quaternary ammonium ion receptor appears to be distinct from the inner one. Apparently the inner quaternary ammonium ion receptor can be reached only when the activation gate for potassium channels is open. We suggest that the inner receptor lies within the channel and that the channel is a pore with its activation gate near the axoplasmic end.  相似文献   

13.
The mechanism of iron transport into erythroid cells was investigated using rabbit reticulocytes and mature erythrocytes incubated with 59Fe-labelled Fe(II) in isotonic sucrose or in solutions in which the sucrose was replaced with varying amounts of isotonic NaCl or KCl. Iron uptake was inhibited at all concentrations of NaCl, in a concentration-dependent manner, but with KCl inhibition occurred only at concentrations up to 10 mM. Higher KCl concentrations stimulated iron uptake to the cytosol of the cells, but inhibited its incorporation into heme. This effect became more marked as the iron concentration was raised. It was found that KCl inhibits iron incorporation into heme and stimulates iron uptake by mature erythrocytes, as well as by reticulocytes. It is concluded that erythroid cells can take up nontransferrin-bound Fe(II) by two mechanisms. One is a high-affinity mechanism that is limited to reticulocytes, saturates at a low iron concentration, and is inhibited by metabolic inhibitors. The other is a low-affinity process that is found in both reticulocytes and erythrocytes, becomes more prominent at higher iron concentrations, and is stimulated by KCl, as well as RbCl, LiCl, CsCl, and choline Cl. The KCl stimulation is inhibited by amiloride, but not by metabolic inhibitors, and its operation is not dependent on changes in cell volume or membrane potential, but it does require the presence of a permeant extracellular anion. Iron uptake by this process appears to occur by facilitated transport and is possibly assoicated with exchange of Na+. A further aspect of this study was a comparison of iron uptake by reticulocytes from Fe(II)-sucrose and Fe(II)-ascorbate using a variety of incubation conditions. No major differences were observed. © 1995 Wiley-Liss, Inc.  相似文献   

14.
The objective of this study was to assess the effects of nickel chloride on human and rainbow trout erythrocytes in vitro. The cells were incubated with 0, 0.5 and 1 mM nickel chloride for 1 h at pH 7.40 and 25°C, then K+ efflux, SO42− uptake and GSH and GSSG concentrations were measured. In both kind of cells, “high concentration” nickel treatment increased KCl efflux with respect to the control. The SO42− uptake was not significantly different at “low nickel concentration” but was lower in erythrocytes treated with 1 mM nickel chloride; the rate constant of SO42− uptake decreased by 35% in human erythrocytes and by 44% in fish erythrocytes. Nickel chloride also acts on cellular metabolism and in particular on erythrocyte glutathione peroxidase with consequent increase in oxidative stress; the data show a significant decrease in intracellular GSH in both human (25%) and fish erythrocytes (18%) after treatment with nickel chloride, with concomitantly high GSSG concentrations and lower GSH/GSSG ratios.  相似文献   

15.
Homeostatic regulation of the plasma choline concentration depends on the effective functioning of a choline transporter in the kidney. However, the nature of the choline transport system in the kidney is poorly understood. In this study, we examined the molecular and functional characterization of choline uptake in the rat renal tubule epithelial cell line NRK-52E. Choline uptake was saturable and mediated by a single transport system, with an apparent Michaelis-Menten constant (Km) of 16.5 μM and a maximal velocity (Vmax) of 133.9 pmol/mg protein/min. The Vmax value of choline uptake was strongly enhanced in the absence of Na+ without any change in Km values. The increase in choline uptake under Na+-free conditions was inhibited by Na+/H+ exchanger (NHE) inhibitors. Choline uptake was inhibited by the choline uptake inhibitor hemicholinium-3 (HC-3) and organic cations, and was decreased by acidification of the extracellular medium and by intracellular alkalinization. Collapse of the plasma membrane H+ electrochemical gradient by a protonophore inhibited choline uptake. NRK-52E cells mainly express mRNA for choline transporter-like proteins (CTL1 and CTL2), and NHE1 and NHE8. CTL1 protein was recognized in both plasma membrane and mitochondria. CTL2 protein was mainly expressed in mitochondria. The biochemical and pharmacological data indicated that CTL1 is functionally expressed in NRK-52E cells and is responsible for choline uptake. This choline transport system uses a directed H+ gradient as a driving force, and its transport functions in co-operation with NHE8. Furthermore, the presence of CTL2 in mitochondria provides a potential site for the control of choline oxidation.  相似文献   

16.
Ammonium and methylammonium are rapidly taken up by cultures of Azotobacter vinelandii respiring in the presence of succinate. The rate of methylamine uptake increased with external pH from 5.5 to 7.5 but increasing the pH further to 8.5 had little effect on activity, indicating that methylammonium cation rather than uncharged methylamine is the permeant species. The kinetics of methylammonium entry followed the Michaelis-Menten relationship, yielding a Km of 25 μM and a Vmax of 3.8 nmol/min per mg of cell protein. At saturating concentrations ammonium was taken up at rates 30-fold higher than those for methylammonium. Ammonium was a competitive inhibitor of methylammonium uptake and gave an inhibition constant of 1 μM. Ammonium derivatives were inhibitors of methylammonium entry in order of effectiveness: hydrazine > methylhydrazine > formamidine > guanidine > dimethylamine > ethylamine; amides and amino acids did not block uptake. Likewise, metal cations inhibited in the order Tl+ > Cs+ > Rb+, whereas Na+, K+, and Li+ produced no significant effect. Methylammonium uptake was blocked in cells exposed to an uncoupler, p-trifluorome-thoxycarbonyl cyanide-phenyl hydrazone or gramicidin D, but not with dicyclo-hexylcarbodiimide or arsenate. Valinomycin stimulated methylammonium entry into cells in a K+-free medium but prevented entry in the presence of 10 mM K+. Monensin and nigericin had little effect on transport. These results indicate that methylammonium and ammonium ions enter A. vinelandii electrogenically via a specific transporter.  相似文献   

17.
Choline permeability in cardiac muscle cells of the cat   总被引:2,自引:1,他引:1  
Permeability of the cardiac cell membrane to choline ions was estimated by measuring radioactive choline influx and efflux in cat ventricular muscle. Maximum values for choline influx in 3.5 and 137 mM choline were respectively 0.56 and 9 pmoles/cm2·sec. In 3.5 mM choline the intracellular choline concentration was raised more than five times above the extracellular concentration after 2 hr of incubation. In 137 mM choline, choline influx corresponded to the combined loss of intracellular Na and K ions. Paper chromatography of muscle extracts indicated that choline was not metabolized to any important degree. The accumulation of intracellular choline rules out the existence of an efficient active pumping mechanism. By measuring simultaneously choline and sucrose exchange, choline efflux was analyzed in an extracellular phase, followed by two intracellular phases: a rapid and a slow one. Efflux corresponding to the rapid phase was estimated at 16–45 pmoles/cm2·sec in 137 mM choline and at 1.3–3.5 pmoles/cm2·sec in 3.5 mM choline; efflux in 3.5 mM choline was proportional to the intracellular choline concentration. The absolute figures for unidirectional efflux were much larger than the net influx values. The data are compared to Na and Li exchange in heart cells. Possible mechanisms for explaining the choline behavior in heart muscle are discussed.  相似文献   

18.
Transport properties mediated by ionic channels were studied by the patch-clamp technique in protoplasts from cortical parenchyma cells of maize roots (CPMR). While outward currents could be seen only occasionally, macroscopic voltage- and time-dependent potassium-selective inward currents (IK+in) were frequently observed in the whole-cell configuration. These currents increased continuously as a function of K+ concentration (in the range 3 – 200 mm) and the slow-saturating macroscopic chord-conductance was fitted by a Michaelis-Menten function with Km = 195 ± 39 mm. Other ions, like sodium and lithium, did not permeate at all through the maize root inward-channel, or like ammonium (PNH4+/ PK+ = 0.16 0.25) and rubidium (PRb+/PK+≈ 0.10) displayed a very low permeability ratio. Up to 5 mm Rb+ did not induce any inhibition of the K+ inward current, whereas submillimolar concentrations of Cs+ were sufficient to block, in a voltage-dependent manner, the inward currents. A decrease of the external potassium concentration favoured Cs+ inhibition (Km = 89 ± 6 μm and 26 ± 2 μm in 200 and 100 mm KCl, respectively). The potassium inward-currents were reversibly and consistently inhibited by submillimolar external concentrations of the metal ions Ni2+, Zn2+ and Co2+, while 1 mm La3+ only slightly decreased (≈10%) both the single channel conductance (9.2 ± 1.2 pS in 100 mm potassium) and the macroscopic current. In contrast to the case with Cs+, inhibition induced by other metal ions did not show any voltage dependence. These results suggest that, as with animal potassium channels, the inward channel of maize-root cortical cells has a narrow pore of permeation and metal ions decrease the K+ current, possibly by acting on binding sites located outside the pore. Received: 21 February 1997 / Accepted: 27 May 1997  相似文献   

19.
The kinetics of sodium dependency of GABA uptake by satellite glial cells was studied in bullfrog sympathetic ganglia. GABA uptake followed simple Michaelis-Menten kinetics at all sodium concentrations tested. Increasing external sodium concentration increased bothK m andV max for GABA uptake, with an increase in theV max/K m ratio. The initial rate of uptake as a function of the sodium concentration exhibited sigmoid shape at 100 M GABA. Hill number was estimated to be 2.0. Removal of external potassium ion or 10 M ouabain reduced GABA uptake time-dependently. The effect of ouabain was potentiated by 100 M veratrine. These results suggest that at least two sodium ions are involved with the transport of one GABA molecule and that sodium concentration gradient across the plasma membrane is the main driving force for the transport of GABA. The essential sodium gradient may be maintained by Na+, K+-ATPase acting as an ion pump.  相似文献   

20.
Ammonium recovery using a two chamber microbial fuel cell (MFC) was investigated at high ammonium concentration. Increasing the ammonium concentration (from 0.07 to 4 g ammonium-nitrogen/L) by addition of ammonium chloride did not affect the performance of the MFC. The obtained current densities by DC-voltammetry were higher than 6 A/m2 for both operated MFCs. Also continuous operation at lower external resistance (250 Ω) showed an increased current density (0.9 A/m2). Effective ammonium recovery can be achieved by migrational ion flux through the cation exchange membrane to the cathode chamber, driven by the electron production from degradation of organic substrate. The charge transport was proportional to the concentration of ions. Nonetheless, a concentration gradient will influence the charge transport. Furthermore, a charge exchange process can influence the charge transport and therefore the recovery of specific ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号