首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
芦苇叶片功能性状的空间变化反映克隆植物的资源分配格局,而其与土壤环境因子的耦合关系体现了克隆植物对异质环境的生态适应策略。本研究以中国西北内陆湿地克隆植物芦苇为对象,分析了湿生生境、盐沼生境、荒漠生境条件下芦苇叶片功能性状及其对土壤环境因子的响应。结果表明: 从湿生生境到荒漠生境,芦苇叶片C、N、P含量分别下降7.2%、40.0%、64.1%,N、P利用效率增加,芦苇叶长、叶宽、叶面积、叶干重、比叶面积和叶厚度均表现出减小趋势。芦苇叶片功能性状间存在协同变化的特征,比叶面积与叶片营养元素表现出显著相关关系。土壤容重、盐分和水分分别是驱动湿生生境、盐沼生境和荒漠生境芦苇叶片功能性状变异的最重要的环境因子。  相似文献   

3.
种子功能性状反映了植物适应环境变化的繁殖对策,这是植物在自然环境选择和遗传上的一种进化行为,对深入认识植物及种子对环境的长期适应性进化意义重大。本研究对中国滨海6个省市9个地区的滨海沼泽湿地(21°29′—40°57′ N)主要土著植物芦苇种子功能性状(包括种子大小、重量、结实率和产量)进行研究,分析其纬度变异规律。结果表明: 我国滨海湿地芦苇种子各功能性状在不同纬度差异显著,各功能性状间具有显著的相关性。芦苇种子大小(种长、种宽、种形指数、长宽比、种子表面积)和百粒重与纬度呈显著的二次函数关系,随着纬度升高先降后升,而种子结实率呈现先升后降的规律,芦苇种子数量与大小间存在着权衡关系。单位面积种子产量随着纬度升高显著增加。逐步回归分析显示,气候因素是影响不同纬度间芦苇种子功能性状差异的主要因素,土壤孔隙水的pH和盐度次之。  相似文献   

4.
Biological invasions change native plant communities, but theory predicting whether introductions create naturalized or invasive species is lacking. Focusing on either plant traits or interactions of introduced plants with native biota creates unreliable results, and improvements may require integration of trait- and interaction-based approaches. To assess the importance of plant traits and herbivory on invasiveness, we incorporated herbivore effects in comparisons of growth and phenology of invasive Phragmites australis and its native congener P. australis subsp. americanus. Our results were influenced by venue (field or common garden), with extended life span and optimized leaf-age structure of introduced P. australis indicating greater potential for resource capture. Attack by introduced gallflies affected expression of plant traits, but we found no consistent effect of aphid attack. Origin did not affect leaf emergence or stem height, but preferential gallfly attack stunted native P. australis and delayed senescence. Greater resource capture and lower attack by nonnative herbivores could give introduced P. australis an advantage over the native subspecies. Our results demonstrating the importance of plant traits as well as their modification by interactions with natural enemies questions whether the outcome of plant introductions can be predicted.  相似文献   

5.
《Aquatic Botany》2007,86(3):269-279
Phragmites australis (Cav.) Trin. ex Steud. is virtually cosmopolitan and shows substantial variation in euploidy level and morphology. The aim of this study was to assess clone-specific differences in morphological, anatomical, physiological and biochemical traits of P. australis as affected by the geographic origin, the euploidy level (4x, 6x, 8x and 12x), and to assess differences between native and introduced clones in North America. Growth, morphology, photosynthetic characteristics, photosynthetic pigments and enzymes were measured on 11 geographically distinct clones propagated in a common environment in Denmark. Any differences between the measured parameters were caused by genetic differences between clones.Overall, the largest differences between clones were found in ontogeny, shoot morphology and leaf anatomy. The North Swedish clone was adapted to short growing seasons and sprouted very early in the spring but senesced early in July. In contrast, clones from southern regions were adapted to warmer and longer growing seasons and failed to complete the whole growth-cycle in Denmark. Some clones from oceanic habitats with climatic conditions that do not differ much from conditions at the Danish growth site did flower in the common environment.The octoploid genotype in general had larger dimensions of leaves, taller and thicker shoots and larger cell sizes than did the hexaploid and tetraploid clones. The dodecaploid clone was neither bigger than the octoploid, nor significantly different from tetraploid and hexaploid clones in most of the morphological characters observed. Stomatal density decreased with increasing ploidy level, while length of guard cells increased. Tetraploid clones generally had morphometric dimensions, similar to hexaploids. Hence, polyploidy did not always result in an increase in plant size, probably because the number of cell divisions during development is reduced.Four North American clones were included in the study. The clone from the Atlantic Coast and the supposed invasive European clone resembled each other. The Gulf Coast clone differed from the rest of the clones in having leaf characters resembling Phragmites mauritianus Kunth. Thus, morphological characters are not unmistakable parameters that can be used to discriminate between introduced and native clones.The physiological and biochemical processes also differed between clones, but these processes showed considerable phenotypic plasticity and were therefore very difficult to evaluate conclusively.It is concluded that P. australis is a species with very high genetic variability which is augmented by its cosmopolitan distribution, clonal growth form and the large variation in chromosome numbers. It is therefore not surprising that large genetically determined differences in ontogeny, shoot morphology and leaf anatomy occur between clones.  相似文献   

6.
7.
8.
芦苇与入侵植物互花米草的光合特性比较   总被引:22,自引:5,他引:22  
赵广琦  张利权  梁霞 《生态学报》2005,25(7):1604-1611
以上海崇明东滩湿地外来入侵植物互花米草与本地种芦苇为研究对象,对它们的光合特性进行了比较研究,结果表明:(1)与芦苇相比,互花米草具有更高的表观量子效率(AQY)、CO2羟化效率(CE)和最大净光合速率(pmax);(2)生长季节初期,互花米草午间时段的光合、气孔导度和蒸腾速率均高于芦苇,各指标与光、温的变化基本一致;(3)互花米草的净光合速率曲线呈“单峰”型,测定指标在强光合辐射、高温条件下迅速上升,芦苇则表现出明显的“午休”现象;(4)在生长季节初期(5月份)和活跃期(9月份),互花米草的净光合速率显著高于芦苇,而在生长季节后期(11月份)则低于芦苇。该项研究有利于解释互花米草生长迅速,生产力高,竞争性强的生理生态学特性。  相似文献   

9.
10.
为了研究芦苇在黄河三角洲潮水和淡水两种生境条件下的生长差异,特别是根系生态特征差异,分别在潮水区和淡水区选取长势均匀的芦苇群落,测量不同土层电导率、pH值,芦苇株高、密度、茎叶及不同土层主根、须根生物量、离子含量等指标.结果表明,两个区域的表层土壤(0—10 cm)电导率均大于下层土壤,并在20—30 cm土层处电导率...  相似文献   

11.
互花米草(Spartina alterniflora)入侵盐沼生态系统导致了土著广食性昆虫素毒蛾(Laelia coenosa)发生宿主转移。但是, 目前对素毒蛾在互花米草和芦苇(Phragmites australis)上的生活史规律的比较尚未见报道, 而此信息对评价素毒蛾能否持续利用互花米草具有重要的参考价值。为了明确素毒蛾在其原始宿主芦苇和外来新宿主互花米草上的生活史动态, 我们在上海崇明长江口盐沼湿地中, 对素毒蛾在芦苇和互花米草生境中的发生情况进行了系统调查。结果显示, 虽然素毒蛾在芦苇和互花米草上均一年发生3代, 并都以幼虫越冬, 但在互花米草生境中, 越冬代幼虫开始越冬的时间要比芦苇中晚20 d左右, 其他世代中的多个虫态在互花米草上持续出现的时间也比芦苇上延迟了约10 d。这些结果表明, 互花米草入侵后素毒蛾在外来植物上出现的持续时间虽然发生了延长, 但其年世代数未变化。我们推测素毒蛾在互花米草和芦苇上生长发育规律的差异可能受生境的资源可利用性及两种植物的营养与防御水平调控。  相似文献   

12.
The prospective rise in atmospheric CO2 and temperature may change the distribution and invasive potential of a species; and intraspecific invasive lineages may respond differently to climate change. In this study, we simulated a future climate scenario with simultaneously elevated atmospheric CO2 and temperature, and investigated its interaction with soil salinity, to assess the effects of global change on the ecophysiology of two competing haplotypes of the wetland grass Phragmites australis, that are invasive in the coastal marshes of North America. The two haplotypes with the phenotypes ‘EU‐type’ (Eurasian haplotype) and ‘Delta‐type’ (Mediterranean haplotype), were grown at 0‰ and 20‰ soil salinity, and at ambient or elevated climatic conditions (700 ppm CO2, +5 °C) in a phytotron system. The aboveground growth of both phenotypes was highest at the elevated climatic conditions. Growth at 20‰ salinity resulted in declined aboveground growth, lower transpiration rates (E), stomata conductance (gs), specific leaf area, photosynthetic pigment concentrations, and a reduced photosynthetic performance. The negative effects of salinity were, however, significantly less severe at elevated CO2 and temperature than at the ambient climatic conditions. The Delta‐type P. australis had higher shoot elongation rates than the EU‐type P. australis, particularly at high salinity. The Delta‐type also had higher maximum light‐saturated rates of photosynthesis (Asat), maximum carboxylation rates of Rubisco (Vcmax), maximum electron transport rates (Jmax), triose phosphate utilization rates (Tp), stomata conductance (gs), as well as higher Rubisco carboxylation‐limited, RuBP regeneration‐limited and Tp‐regeneration limited CO2 assimilation rates than the EU‐type under all growth conditions. Our results suggest that the EU‐type will not become dominant over the Delta‐type, since the Delta‐type has superior ecophysiological traits. However, the projected rise in atmospheric CO2 and temperature will alleviate the effects of salinity on both phenotypes and facilitate their expansion into more saline areas.  相似文献   

13.
After its introduction into North America, Euro‐Asian Phragmites australis became an aggressive invasive wetland grass along the Atlantic coast of North America. Its distribution range has since expanded to the middle, south and southwest of North America, where invasive P. australis has replaced millions of hectares of native plants in inland and tidal wetlands. Another P. australis invasion from the Mediterranean region is simultaneously occurring in the Gulf region of the United States and some countries in South America. Here, we analysed the occurrence records of the two Old World invasive lineages of P. australis (Haplotype M and Med) in both their native and introduced ranges using environmental niche models (ENMs) to assess (i) whether a niche shift accompanied the invasions in the New World; (ii) the role of biologically relevant climatic variables and human influence in the process of invasion; and (iii) the current potential distribution of these two lineages. We detected local niche shifts along the East Coast of North America and the Gulf Coast of the United States for Haplotype M and around the Mississippi Delta and Florida of the United States for Med. The new niche of the introduced Haplotype M accounts for temperature fluctuations and increased precipitation. The introduced Med lineage has enlarged its original subtropical niche to the tropics‐subtropics, invading regions with a high annual mean temperature (> ca. 10 °C) and high precipitation in the driest period. Human influence is an important factor for both niches. We suggest that an increase in precipitation in the 20th century, global warming and human‐made habitats have shaped the invasive niches of the two lineages in the New World. However, as the invasions are ongoing and human and natural disturbances occur concomitantly, the future distribution ranges of the two lineages may diverge from the potential distribution ranges detected in this study.  相似文献   

14.
15.
16.
Among the traits whose relevance for plant invasions has recently been suggested are genome size (the amount of nuclear DNA) and ploidy level. So far, research on the role of genome size in invasiveness has been mostly based on indirect evidence by comparing species with different genome sizes, but how karyological traits influence competition at the intraspecific level remains unknown. We addressed these questions in a common‐garden experiment evaluating the outcome of direct intraspecific competition among 20 populations of Phragmites australis, represented by clones collected in North America and Europe, and differing in their status (native and invasive), genome size (small and large), and ploidy levels (tetraploid, hexaploid, or octoploid). Each clone was planted in competition with one of the others in all possible combinations with three replicates in 45‐L pots. Upon harvest, the identity of 21 shoots sampled per pot was revealed by flow cytometry and DNA analysis. Differences in performance were examined using relative proportions of shoots of each clone, ratios of their aboveground biomass, and relative yield total (RYT). The performance of the clones in competition primarily depended on the clone status (native vs. invasive). Measured in terms of shoot number or aboveground biomass, the strongest signal observed was that North American native clones always lost in competition to the other two groups. In addition, North American native clones were suppressed by European natives to a similar degree as by North American invasives. North American invasive clones had the largest average shoot biomass, but only by a limited, nonsignificant difference due to genome size. There was no effect of ploidy on competition. Since the North American invaders of European origin are able to outcompete the native North American clones, we suggest that their high competitiveness acts as an important driver in the early stages of their invasion.  相似文献   

17.
Summary Intraspecific differences in the patterns of heterothermy were found in captive Belding's ground squirrels that hibernated undisturbed at ambient temperatures of 5°C, 10°C, and 15°C. The timing of all entrances into and arousals from hibernation was determined from records of copper-constantan thermocouples that were mounted on the floor of each animal's nest box and connected to continuously recording potentiometers. In the absence of food, large adult males terminated hibernation spontaneously in the spring. In contrast, females and small non-breeding males (yearlings) did not stop hibernating but instead they shortened their bouts of torpor in the spring so that they aroused every three or four days. This interval of frequent arousals, termed the emergence period, lastel until the squirrels became emaciated, and it was only in the 2 or 3 weeks preceeding death (starvation period) that arousal frequency once again decreased towards midwinter values (Fig. 3). These animals terminated hibernation when fed during the emergence or starvation periods, but they were able to resume torpor if that feeding lasted less than a week.Termination of hibernation and reproductive development in males were related to the size of the animals, not their age. Males two years and older which did not deposit normal quantities of fat were like yearlings in that they had open-ended hibernation seasons and showed little testicular enlargement. Likewise, juvenile males that grew to near adult size in their first summer spontaneously terminated hibernation and had well developed testes like most older individuals. In addition, both the frequency and duration of arousals in the emergence period were related, in part, to the extent of the animals' fat reserves, such that large squirrels spent more time at high body temperatures than small individuals (Figs. 5, 6). This trend was most pronounced at high ambient temperatures.These intraspecific differences in hibernation physiology are consistent with the sex and agerelated differences in the timing of emergence above ground in nature. The increase in the time spent euthermic in the spring isinterpreted as an adaptation for increasing the opportunities for environmental assessment. The intraspecific differences in the extent of this euthermia appear to be associated with differences in the balance between the energy supplies available to an animal and its need to accelerate the use of that energy (i.e., arouse) in order to achieve an early and accurately-time emergence from the hibernaculum.  相似文献   

18.
An invasive variety of Phragmites australis (Poaceae, common reed), the M haplotype, has been implicated in the spread of this species into North American salt marshes that are normally dominated by the salt marsh grass Spartina alterniflora (Poaceae, smooth cordgrass). In some European marshes, on the other hand, Spartina spp. derived from S. alterniflora have spread into brackish P. australis marshes. In both cases, the non-native grass is thought to degrade the habitat value of the marsh for wildlife, and it is important to understand the physiological processes that lead to these species replacements. We compared the growth, salt tolerance, and osmotic adjustment of M haplotype P. australis and S. alterniflora along a salinity gradient in greenhouse experiments. Spartina alterniflora produced new biomass up to 0.6 M NaCl, whereas P. australis did not grow well above 0.2 M NaCl. The greater salt tolerance of S. alterniflora compared with P. australis was due to its ability to use Na(+) for osmotic adjustment in the shoots. On the other hand, at low salinities P. australis produced more shoots per gram of rhizome tissue than did S. alterniflora. This study illustrates how ecophysiological differences can shift the competitive advantage from one species to another along a stress gradient. Phragmites australis is spreading into North American coastal marshes that are experiencing reduced salinities, while Spartina spp. are spreading into northern European brackish marshes that are experiencing increased salinities as land use patterns change on the two continents.  相似文献   

19.
20.
【目的】明确北京口岸从进境邮寄物中截获的蜗牛种类,及其分类地位、分布、潜在入侵危害性等情况。【方法】通过形态学特征和DNA条形码技术对截获的蜗牛样本进行物种鉴定,并通过相关文献综合分析比较该物种与近似种的区别,以及我国口岸检疫性蜗牛的截获情况。【结果】鉴定结果为检疫性软体动物盖罩大蜗牛,隶属于腹足纲柄眼目大蜗牛科大蜗牛属。【结论】针对随邮寄物传入的检疫性蜗牛种类,建议口岸在主要应用形态学进行鉴定的基础上,利用DNA条形码技术进行辅助鉴定,从而提高鉴定准确率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号