首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
K pokus?m jsme pou?ili ?erstvých oddenk? pýru plazivého (Agropyrum repens L.) a jarní p?enice Nivy. Kultiva?ní pokusy jsme prováděli v Mitscherlichových nádobách v písku a v kompostové zemině na zahradě. Délka spole?ného r?stu pýru a p?enice trvala vesměs kolem 30 dní. Byl stanoven r?st pýru, r?st nadzemních ?ástí p?enice, intensita dýchání, obsah vody a obsah cukr? v nadzemních ?ástech p?enice. Výsledky pokus? ukázaly, ?e ?ím intensivněji nar?stal pýr v kultiva?ních nádobách, tím více se sni?oval r?st p?enice a rovně? tak poklesl obsah vody v jejich nadzemních ?ástech a zna?ně se změnil i obsah glycid?. Intensita dýchání se p?i men?ím mno?ství pýru v nádobách vět?inou poněkud zvedala, p?i největ?ím mno?ství pýru ji? poněkud poklesala. Ve srovnání s r?stem byla v?ak velmi málo ovlivněna. Z toho je patrno, ?e produktivnost dýchacích proces? p?enice vlivem pýru byla zna?ně sní?ena. K hlub?ímu objasnění těchto změn bude t?eba dal?í jejich studium.  相似文献   

2.
V práci byl sledován vliv p?edplodin lnu, ?ita, máku a ho??ice na následné plodiny tého? nebo jiného druhu p?i bezprost?edním vysévání po sobě a p?i vysévání v r?zně dlouhých ?asových intervalech s odstupňovanou délkou odpo?ívání zeminy. Pokusy byly prováděny v nádobách naplněných kompostovou zeminou, které byly umístěny na pokusné zahradě. Byl hodnocen r?st p?edplodiny a následné plodiny stanovením su?iny nadzemních ?ástí a ko?en?. Během r?stu následných rostlin byly odebírány vzorky zemin, v nich? byl stanoven obsah fyziologicky p?istupného dusíku, fostoru a draslíku. V?echny ?ty?i pou?ité p?edplodiny p?sobily pr?kazné změny v r?stu následných rostlin. Len a mák pěstované jako p?edplodiny p?sobily na následné rostliny lnu a cukrovky prost?ednictvím p?dních autopatických ?i allelopatických faktor?. Ú?inek ?ita jako p?edplodiny na ?ito a ho??ice na je?men byl méně výrazný. Z výsledk? se nedá v posledních dvou p?ípadech p?ímo usuzovat na p?ítomnost autopatických nebo allelopatických faktor?. P?i bezprost?ední kultivaci následných rostlin v zemině po p?edplodině bez odpo?ívání byla zji?těna jen inhibice r?stu. Pokusy s odstupňovanou délkou odpo?ívání zeminy dávají mo?nost zachytit celou ?kálu r?stových změn následných rostlin od inhibice ke stimulaci. Ú?inek p?edplodiny na následnou plodinu se zna?ně měnil s délkou odpo?ívání zeminy po p?edplodině. Změny r?stu následných rostlin nekorelovaly—kromě pokusu s ?item a ?áste?ně s ho??icí—se změnami v obsahu sledovaných ?ivin, ani s mno?stvím narostlé p?edplodiny.  相似文献   

3.
A?koliv na zá kladě mnoha pokus? se p? edpokládalo, ?e tzv. bÍlkovinná v?etena v buňkách tzn. buně?né inkluse X-viru kaktus? (Ca XV), jsou slo?ena z ?etních prodlou?ených ?ásti Ca XV, p?esto to dosud nebylo proká zá no. Proto jsme se pokusili pomocÍ fluoreskujÍcÍch protilátek doká ?at, ?e bilkovinná v?etena jsou skute?ně agregáty virových ?ástic. V těto práci jsme pouzili tzv. nep?Ímé metody. Nejprve jsme p? sobili na buňky obsahujÍci tato v?etena homologiokým antisé rem proti Ca XV, zÍskanym imunizacÍ králÍk? a teprve potom jsme buňky vlo?ili do roztoku fluoreskujicÍch protilátek proti králicimu γglobulinu. BÍlkovinná v?etena svitila potom ve fluorescen?nÍm mikroskopu silně ?lutozeleně (bylopou?ito fluoresceinisothiocyaná tu). Tato fluorescence ná m uká zala, ?e nastala pozitivnÍ reakce a ?e bÍlkovianá v?etena jsou slo?ena z virových ?ástic. ?etné kontrolnÍ pokusy potvrdily ná? základnÍ pokus.  相似文献   

4.
Byla studována transpirace listových ?epelí zavla?ovaných a nezavla?ovaných rostlin jarní p?enice v závislosti k obsahu a k r?stovým změnám pokusných rostlin v pr?běhu jejich vývoje. Pou?ité závlahy stimulovaly r?st a nepatrně zpomalily vývoj pokusných rostlin. Zvy?ovaly v rostlinném těle p?edev?ím obsah vody a méně ji? su?inu. Kvantitativní a kvalitativní vlastnosti obsahu vody v rostlině ovlivňovaly nejen transpiraci, nýbr? i vznik nových a odumírání starých orgán? a tkání, p?edev?ím ?epelí listových. Transpirace u zavla?ovaných rostlin byla výrazné vy??í ne? u rostlin nezavla?ovaných. Pr?měrné hodnoty transpirace u jednotlivých ?epelí listových byly z?etolně odli?né a pro ka?dou ?epel listovou charakteristické. Z hlediska statického bylo mo?no některé vztahy a heterogenitu jednotlivých ?epelí listových na tém?e stéblu vyjád?it a v podstatě i vysvětlit “Zalenského zákonem”. Týkalo se to zejména pr?měrných hodnot r?stových charakteristik a studovaných rys? vodního provozu. Naproti tomu z hlediska dynamického bylo mo?no jednotlivé ?epele listové rozdělit podle změn transpirace do dvou skupin. Do prvé skupiny pat?í ?epel prvého a? t?etího listu, do druhé skupiny pak ?epel ?tvrtého a? ?estého listu a klas. Regula?ní schopnosti jednotlivých ?epelí listových v hospoda?ení s vodou vynikají v období odno?ování, sloupkování a mlé?né zralosti. V těchto vývojových fázích byla vysvětlena také nápadná sní?ení transpirace rostlin, která jsou zp?sobena v prvé ?adě vnit?ními a nikoliv jen vněj?ími faktory.  相似文献   

5.
Pomocí tkáňových kultur in vitro byla studována proliferace kambia a parenchymu větví 34 druh? d?evin. Byla sledována tvorba kalusu, sezónní aktivita kambia, vliv kyseliny β-indolyloctové na reaktivaci kambia a polarita tvorby kalusu. R?zné druhy d?evin se vyznaěují r?znou schopností vytvá?et kalus; u vět?iny druh? v?ak v kultu?e in vitro dochází k reaktivaci kambia. Některé druhy sou?asně s reaktivací kambia tvo?í kalus z korové a d?eňo ?ásti větví a lenticel. R?st kalus? byl největ?í v zimě, dostate?ně intensivní na ja?e do ra?ení pupen?, později prudce klesal. Během léta intensita r?stu opět vzr?stala a na podzim se p?ibli?ovala zimní úrovni. Některé druhy se vyzna?ují stejně intensivní proliferací kambia po celý rok. Kyselina β-indolyloctová, jako sou?ást kultiva?ního media, měla r?zný vliv na r?st kalus? sledovaných druh?. ?ada druh? zakládala v kalusových pletivech meristematická ohniska, ze kterých se tvo?ily ko?eny (?astěji na p?dách s kyselinou β-indolyloctovou) nebo pupeny a osy. Poloha ?ízk? na p?dě (apikálním koncem nahoru nebo dol?) neměla znatelný vliv na polaritu p?i tvorbě kalusového pletiva. Některé druhy tvo?ily kalusové pletivo na obou koncích ?ízk?.  相似文献   

6.
Ji? d?íve zji?těné (Slavík 1959a) rozlo?ení hodnot osmotického tlaku buně?né ?távy na plo?e listové ?epele dvoudělo?ného typu (apex >base, okraj > centrální ?ást), nezávislé na vodní bilanci a nezměněné i p?i nulovém deficitu difusního tlaku (DPD)in situ bylo doplnéno dal?ím sledováním fysiologické heterogenity listové ?epele u dospělých list?Nicotiana sanderae hort., p?edev?ím hlavních indikátor? vodního provozu a výměny CO2. Intensita transpirace s intaktního povrehu list?, vypo?tená z vá?kových mě?ení na discích, vyseknutých z ?epele, je v apikální ?ásti o 50 a? 70%, ni??í ne? na basi. Rovně? p?irozený trvalý vodní deficit, stanovený diskovou metodou (?atský 1960), byl v apikální ?ásti o 10% ni??í ne? na basi. Hustota pr?duch? byla jak uNicotiana sanderae, tak u dal?í pokusné rostliny u cukrovky v apikální ?ásti pr?měrně o 40% ni??í, zatím co velikost pr?duch? byla v apikální ?ásti naopak pr?měrně o 30% vět?í. Relativní index plochy pr?duchových skulin na plochu ?epele (po?et × ?tverec délky na svrchní plus spodní straně) se na obou místěch pr?kazně neli?il. Intensita fotosynthesy (na plochu), mě?ená gazometricky infra?erveným analysátorem, byla p?i plném nasycení pletiva vodou v apikální ?ásti pr?kazně o 17% ni??í ne? v ?ásti basální, a?koliv obsah chlorofylu na plochu je v tlust?í, apikální ?ásti vět?í. Rovně? intensita dýchání, manometricky mě?ená jako QO2, byla v apikální ?ásti pr?kazně ni??í, a to jak v p?epo?tu na su?inu (o 12%), tak na plochu. Podobné, av?ak podstatně men?í rozdíly byly zji?těny také mezi okrajem a centrální ?ástí ?epele. Fysiologická heterogenita listové ?epele je kauzálně zalo?ena na r?zné hydrata?ní úrovni, tak?e studium aktivity r?zných fysiologických proces?, na r?zných místech ?epele je vhodné pro sledování jejich vztahu k r?zné úrovni hydratace.  相似文献   

7.
V p?edlo?ené práci je sledován ú?inek humusových látek aplikovaných na listy cukrovky post?ikem. Sou?asně je ově?ována vhodnost kombinace humusových látek s minerálními ?ivinami. Ukazuje se, ?e post?ik humusovými látkami zvlá?tě v kombinaci s minerálními ?ivinami p?íznivě ovlivňuje r?st cukrovky, zvy?uje váhu list? i ko?ene a celkové mno?ství cukru v ko?eni. Ú?inok post?iku humusovými látkami je vět?í u rostlin pěstovaných ve vodní kultu?e a st?íkaných ?ivným roztokem s kompletněj?ím zastoupením minerálních prvk?. Humusové látky p?i aplikaci na list vyvolávají podobné změny v anatomické stavbě pletiv a orgán?, jako p?i jejich aplikaci do ?ivného roztoku ke ko?en?m. Humusové látky zvlá?tě v kombinaci s minerálním roztokem zvy?ují v listech cukrovky mno?ství chlorofylu a zvy?ují intezitu fotosyntézy. Post?ik humusovými látkami zvy?uje sou?asně transpiraci cukrovky.  相似文献   

8.
Autor studoval v pr?běhu dvou let osmotický tlak 70 strom? 7 odr?d jabloně, ze kterých 5 odr?d plodí periodicky a 2 ka Edoro?ně. Na za?átku pokusu polovina strom? byla bez plod? a polovina s násadou plod?. Pokus byl proveden na 10 a? 121et ch stromeoh (podno? M II, M IX a M IV) v severozápadni jabloňárské oblasti ?ech (St?í?ovice, Těchobuzice). 3 a? 4krát za vegeta?ni období byly odebirány listy brachyblast? plodíoích a odpo?ívajících jabloní a stanoven osmotický tlak jejich buně?né ?távy, jako? i její elektrická vodivost. Jednou za sezónu byly odebrány terminálni pupeny brachyblast?, z kterých oby?ejně vznikaji květní pupeny, a zpraeovány stejně jako listy. Ze získaných ?daj? plyne, ?e rostouci plody jsou p?í?inou sni?ení osmotického tlaku buně?né ?távy list? jabloně 2 a? 6 atmosfér v závislosti od mno?stv? násady a období. Toto sni?ení málo závisí na po?asi a rozdíly v osmotickém tlaku buněcné ?távy jabloní plodíeích a odpo?ívajících jsou v ?ervenci vysoce pr?kazné. Osmotický tlak buně?né ?távy pupen? je sni?ován méně: 1 a? 2 atmosféry. Byla nalezena pr?kazná kladná korelace mezi hodnotou osmotického tlaku odrüdy Boskoopské ?ervené a zakládáním květnich pupen?. U ka?doro?ně plodíeích odr?d taková korelace nebyla pozorována.  相似文献   

9.
P?i prohlí?ení svého bohatého materiálu mixoploidních ko?enových vrchol? nalezl jsem ko?eny, které, jak se zdálo, se zbavovaly polyploidních sektor? tím, ?e se roz?těpily v ?ást diploidní a polyploidní. Od?těpení polyploidních provazc? jsou sice dosti ?astá, ale v p?ípadech zde popsaných vytvá?í diploidní sektor nový ko?enový vrchol, polyploidní zastaví pozvolna sv?j r?st, kde?to nově rozli?ený vrchol roste dále. Také to je ur?itý zp?sob samo?i?tění a diploidisace mixoploidního vrcholu. P?edpokladem ov?em je ?e se vrchol skládal p?vodně asi z poloviny nebo více z buněk diploidních, ve druhé ?ásti polyploidních. Potom dojde ve vrcholovém meristému diploidní ?ásti k diferenciaci samostatného diploidního vrcholu, kde?to polyploidní vrcholová ?ást pozvolna nebo náhle dělení svých buněk zastaví, po nějakou dobu se prodlu?uje a kone?ně je roztrhána a odum?e. Mohl jsem některé p?ípravy k samo?těpení v poměrně raných stadiích pozorovat.  相似文献   

10.
Modelové zachycení r?stových porměr? u vy??ích rostlin p?edpokládá mo?nost ozna?ení celého pletiva odvozeného z jedné ur?ité buňky. Za takové ozna?ení lze pova?ovat nap?. ?odmí?ení” (Entmischung) heterogenních plastid? z jedné buňky, polyploidizaci jednotlivých buněk a z nich' odvozených pletiv, stejně jako indukei mutací nap?. pomocí Roentgenova zá?ení. Jestli?e v posledně uvedeném p?ípadě mutuje, ?ekněme, jedna iniciála L II, pak vykazuje ur?itá ?ást sporogenních pletiv tuté? mutaci Za p?edpokladu, ?e neprobíhá eliminace buněk, odpovídá tato ?ást v pr?měru poměru mutované iniciály L H k po?tu zbylých iniciál L II, uplatňujících se na dal?ím vývoji. Model, odvozený z této skute?nosti a z dal?ích p?edpoklad?, uvedených v textu této práce, podává p?edev?im informaci o o?ekávané ?etnosti mutací a ?těpných poměrech v samosprá?eném potomstvu mutovaných rostlin. Ze srovnání se zji?těnými daty vyplývá, ?e pro vyjád?ení těchto poměr? u odno?í je?mene vysta?í relativně jednoduchý model. Jeho základem je p?edpoklad, ?e iniciály p?e?ívají jedna na druhé stochasticky nezávisle a náhodně, a zároveň náhodně mutují. P?itom není nutno u zkoumaných postranních odno?í uva?ovat eliminaci p?vodních iniciál. U hrachu jsou tyto poměry komplikovaněj?í jak ve vztahu k rozdělení ?etnosti mutací, tak ve vztabu k ?těpným poměr?m. Dosud je známe pouze obecně pro celé rostliny tohoto druhu nikoliv v?ak pro jednotlivá květenství. K jejich objasnění je t?eba p?edpokládat, ?e během r?stu probíhá na ur?itých místech eliminace jednotlivých buněk, zodpovědných za tvorbu sporogenních pletiv. Výzkum na tomto modelu není v?ak dosud ukon?en.  相似文献   

11.
Zkoumáním pr?běhu zimního odpo?inku za období 1954–1959 byly zji?těny údaje, na základě kterých je mo?no tvrdit, ?e v podmínkách ji?ního Slovenska meruňka vstupuje do stadia zimního odpo?inku v pr?běhu srpna a ukon?uje toto období během prosince. V uvedených podmínkách pot?ebuje meruňka na jeho p?ekonání 1200–1300 hodin teploty ni??í ne? +6,0°C. Z 11 meruňkových odr?d studovaných na trvání zimního odpo?inku od?ezáním větví a p?ená?ením do skleníkového prost?edí odr?da Ananásová ra?ila pravidelně později o 6–10 dní proti ostatním odr?dám. Tento fakt se shoduje i s praktickými zku?enostmi p?i pěstování meruňky v normálních ekologických podmínkách mírného pásma, kde uvedená odr?da kvete o 3 a? 6 dní později ne? ostatní odr?dy. Na základě pokus? p?i?el autor k závěru, ?e je nemo?né hovo?it o p?ímé závislosti mezi dobou trvání zimního odpo?inku a mrazuvzdorností meruňky. Rostlina po ukon?ení zimního odpo?inku je velmi závislá na teplotních podmínkách prost?edí. P?i p?íznivých teplotních podmínkách zimy (bez kolísání teplot) jsou meruňky schopné odolat mraz?m a? ?20,0°C.  相似文献   

12.
Vypracování nové metody rychlého vy?et?ování meiose u jádrového ovoce bylo vynuceno rozsáhlostí materiálu, který bylo nutno zpracovat p?i cytologickém zhodnocení 40 soret ?eskoslovenského základního hru?ňového sortimentu. Metoda umo?ňuje během t?í dn? získat trvalé ?ezané preparáty p?ibli?né z 1800 pra?ník?. Této metody je mo?no pou?ít u v?ech rostlin, které mají v době pr?běhu reduk?ního dělení v pylovýeh mate?ských buěkách dostate?ně velké pra?níky k extirpaci.  相似文献   

13.
Auto?i sledovali sou?asně intensitu dýchání a intensitu fotosynthesy u list? cukrovky, neoddělených od rostliny. Několik hodin p?ed pokusem asimilovaly listy radioaktivní14CO2, na?e? byly umístěny do normální listové komory k pr? tokovému gazometrickému stanovení intensity fotosynthesy podle změny koncentrace CO2 v procházejícím vzduchu. Sou?asně s gazometrickým stanovením fotosynthesy mě?ili auto?i specifickou aktivitu kysli?níku uhli?itého ve vzduchu, který pro?el asimila?ní komorou. Podle hodnot specifické aktivity CO2, kterou vylu?uje list v temnotě, je mo?no vypo?ítat intensitu dýchání v mg CO2. Bylo zji?těno, ?e listy cukrovky vylu?ují na světle radioaktivní CO2, a to jak první tak i druhý den po asimilaci zna?eného CO2. P?i silném p?eh?ivání list? v komo?e, kdy gazometrickou metodou bylo zji?těno ji? jen dýchání, radiometricky byl stanoven výdej14CO2, odpovídající vy??í intensitě dýchaní. Auto?i vysvětlují tuto skute?nost tím, ?e i p?i p?eh?ívaní list? probíha sou?asně s dýchaním fotosyntheticka asimilace kysli?níku uhli?itého, av?ak pasivní bilance CO2 ve výměně plyn? vede ke zji?těnédýchaní, které je v podstatě rozdílem mezi intensitou piné fotosynthesy a plného dýchaní. Produkce kysli?níku uhli?itého celými listy cukrovky na světle není za normalních podmínek vý?ivy výjime?ným zjevem.  相似文献   

14.
Pri studiu charakteru vzájemného vztahu mezi porfyriny obsahujícími ?elezo a ho??ík jsme uva?ovali o katalytické aktivitě Fe-porfyrin? a o mo?nosti jejich ú?asti p?i tvorbě chlorofyl? v listech a ko?enech rostlin. Byly sledovány změny v obsahu barviv list? v souvislosti s metabolismem ?eleza v rostlině (?innost enzym? obsahujících ?elezo, synthesa protohematinu), a to hlavně: I. p?i aplikaci r?zných slou?enin p?sobících na jednotlivé slo?ky oxydore-dukěních systém? a obsah barviv v rostlině; 2. p?i změnách metabolismu p?sobením změněných podmínek minerální vý?ivy; 3. p?i srovnávání zvlá?tností metabolismu pestrolistých rostlin. Domníváme se, ?e ve v?ech p?ípadech je proces tvorby chlorofyl? p?ímo vázán na pochody vyu?ití ?eleza rostlinou, jak v listech, tak v ko?enech. Jsou uvedeny údaje o synthese protohematinu v isolovaných ko?enech některých rostlin, aktivitě Fe-porfyrinových enzym? v nich a tvorbě chlorofyl? p?i osvětlení ko?en?. Diskutuje se o významu synthesy Fe- a Mg-porfyrin? v ko?enech pro metabolismus celé rostliny. Uva?uje se o vzájemné souvislosti mezi pochody hromadění a vyu?ívání energie v buňce a o rovnováze mezi pochody synthesy a odbourávání pigment? v plastidech.  相似文献   

15.
D?ívěj?í práci, v ní? jsme hodnotili pr?běh vývoje podle fenologie a podle vzniku abnormit, jsme nyní doplnili mě?ením délky list?. Pr?běh vývoje jsme ovlivňovali fotoperiodiekou inhibicí v r?zné fázi vývoje vzrostného vrcholu. Ovlivnění pr?běhu vývoje se projevilo změnou délky pochvy a ?epele listu. ?epel byla ovlivněna více ne? pochva. V ?adě variant s r?zným za?átkem fotoperiodické inhibice do?lo k prodlou?ení nebo ke zkrácení pochvy a ?epele horních t?í list? proti p?íslu?ným list?m kontroly. Ke zkrácení do?lo u list?, které se vyvinuly nad obvyklý po?et z p?vodních základ? brakteí. Bylo to u variant s velmi ranou inhibicí. Varianty s pozděj?í inhibicí mají jednak abnormálně redukované listy so zakrnělými ú?labními klásky, jednak prodlou?ené listy, které svojí délkou p?ipomínají ontogeneticky mlad?í, ni??í listy. Ukázalo se, ?e i u tak obtí?ného materiálu jako je p?enice m??e být morfologie list? spolehlivým záznamem pr?běhu vývoje.  相似文献   

16.
U r?zně starých list? v listové r??ici 90 a? 110 denních rostlin Nicotiana sanderae hort. byly sledovány rozdály v intensitě ?isté fotosynthesy a v obsahu chlorofylu (a + b). Ke stanovení intensity fotosynthesy bylo pou?ito dvou odli?ných metod, a to váhového stanovení p?ír?stku su?iny podle Barto?e, KubÍna a ?et-lÍka (1960) a gazometrického stanovení infra?erveným analyzátorem CO2. Nejvy??í intensitu fotosynthesy i nejvy??í obsah chlorofylu (vzhledem k plo?e listové) mají mladé, ale ji? dob?e rozvinuté listy, tj. t?etí a? ?tvrté od vrcholu (prvním listem se rozumí list o plo?e asi 20 cm2). Tyto listy nazýváme ?fotosyntheticky dospělými“. Listy nejmlad?í a zejména pak listy star?í mají intensitu fotosynthesy i obsah chlorofylu ni??í; u nejstar?ích list? je intensita fotosynthesy prakticky nulová. Intensita fotosynthesy i obsah chlorofylu se během vývoje mění: jejich momentální rozdíly u list? v genetické spirále jsou z?ejmě shodné s jejich změnami v ontogenesi listu. Pokles intensity fotosynthesy p?i stárnutí list? je rychlej?í ne? pokles obsahu chlorofylu. P?i ur?itém obsahu chlorofylu (tj. asi 2,25 a? 2,45 mg/dm2) klesá intensita ?isté fotosynthesy k nule. Intensita fotosynthesy je v lineárním vztahu k mno?ství chlorofylu (p?i p?epo?tu na plo?nou jednotku), a to nezávisle na poloze listu v genetické spirále. Obě pou?ité metody ke stanovení intensity fotosynthesy poskytly obdobné výsledky.  相似文献   

17.
Byly zji??ovány změny osmotického potenciálu (osmotického tlaku) buně?né ??ávy (vylisované z listových pletiv usmrcených p?i 100°C) p?i pasivní vodní bilanci (vadnutí) ?ástí ?epele v závislosti na zvět?ujícím se vodním deficitu (na ztrátě vody). Teoreticky by toti? bylo mo?no p?edpokládat, ?e voda vydaná p?i pasivní vodní bilanci pochází rovnoměrně z ve?keré vody buně?né, tedy také poměrně z podílu, obsa?eného v buně?né ??ávě. V tom p?ípadě by se buně?ná ??áva koncentrovala úměrně vznikajícímu deficitu. V naprosté vět?ině pozorovaných p?ípad? stoupal v?ak osmotický tlak (klesal osmotický potenciál) strměji ne? teoreticky odpovídá sou?asné ztrátě vody. Ze zji?těných rozdíl? mezi zmíněným teoretickým pr?během a mezi nalezenými hodmotami byl vypo?ítán odhad percentuálního podílu ?mobilní” vody v buňce, tj. toho podílu, kterého se v?dy bezprost?edně týkají změny obsahu vody v buňce. Tento podíl ?mobilní” vody byl u dospělých list? kolem 70 a? 80%. Velikost podílu ?mobilní” vody závisela na rychlosti vzniku vodního deficitu: P?i rychlém vadnutí byl u dospělých list? zji?těn men?í podíl ne? p?i vadnutí pomalém. To svěděí o tom, ?e ?mobilní” podíl buně?né vody je vymezován podle vodní bilance buňky dynamickou rovnováhu intracelulárních difusních proud? vody podle gradient? difusního tlaku vody mezi jednotlivými podíly buně?né vody, je? jsou ur?eny r?znou vazbou (?vázaná” voda) i r?znou lokalisací v buňce.  相似文献   

18.
Chloralizujeme-li klíoní koren bobu (Vicia jaba L.) nekolikrát po sobě, vznikne v zevní vrstvě pleromu a ve vnitrní periblemu mnoho polyploidních buněk, které tvoíí nepravidelnou mozaiku, z ní? vznikne transverzální meristem postranních mixoploidních koren?. Na vzniku ka?dé z nich ú?astní se nékolik, pr?měrně asi 30 buněk, a jejich ?inností probíhá ko?enem vedle diploidních. je?tě několik polyploidních provazcú nebo sektor?. Iniciály postranních ko?en? mohou p?sobit dvoustranně jako kambium nebo jednostranně, oddělujíce buňky bud jen pro ?epi?ku nebo jen pro vlastní ko?en. Na zalo?ení postranních ko?enú se v chlorali-zovaných hlavních ko?enech m??e ú?astnit několik vrstev buně?n?ch. Během vývoje mixoploidních ko?en? m??e být některá vrstva iniciál nahrazena vrstvou s ný sousedícý, ?ím? m??e být zastaven práb?h núkterého provazce nebo sektoru ve vrcholu ko?enovém. Diploidní a mixoploidní tkáň m??e se jevit na p?ícném pr?rezu ko?enem velmi nepravidelně rozdělenou. P?esto mohou mít mixoploidní ko?eny zevní tvar v celku normální, nepravidelnosti vznikají vylu?ováním polyploidních ?eber z dal?ího vývoje ko?en? nebo u plomen eutelických a amorfních. V ko?enech, v nich? jsou polyploidní buňky v men?ině, p?sobí jako cizí elementy a jsou pozvolna rozmanitým zp?sobem z dal?iho vývoje vrcholu vylucovány. V ko? enu se děje jaké si samo?istě ní, které m? The current version does not support copying Cyrillic text to the Clipboard. je v?ak pravdě podobno, ?e ve vrcholech, které se skládají z velké vě t?iny buněk polyploidních, m??e probíhat pochod opa?ný vedoucí k úplné jejich polyploidisaci.  相似文献   

19.
V práci se popisuje zp?sob pou?ití metody váhového stanovení intensity fotosynthesy vzork? listového pletiva i pro rostliny s úzkými listovými ?epelemi (nap?. Festuca, Stipa aj.). Vzorek listového pletiva tvo?í zde piocha ráme?ku, který je vyplněn těsně vedle sebe le?ícími listovými úseky. Listové úseky dlouhé 26 mm se vysekávají z list? speciálním razidlem a jejich po?et ve vzorku je nutno pro ka?dý rostlinný druh p?edem experimentálně stanovit. V souvislosti s touto otázkou auto?i popisují závislosti hodnot intensity fotosynthesy na mno?ství úsek? ve vzorku. P?esnost nep?ímého stanovení su?iny kontrolními vzorky je p?i deseti stanoveních a pětiprocentní pravdépodobnosti maximálné ± 1 %, co? dává mo?nost p?i p?edpokládaném p?ír?stku su?iny o 10% mě?it intensitu fotosynthesy s p? esností na ±10%.  相似文献   

20.
V práci byla sledována mo?nost allelopatického ovlivňování následných rostlin p?edplodinami p?i kultivaoi v odstupňovaných ?asových intervalech po sobě v té?e zemině u tě chto kombinací: mák — cukrovka, ho??ice — je?men, konopí — ?ito, cibule — ?epka. Pokusy byly prováděny v kvítiná?ích s kompostovou zeminou, umístěných během pokusu na zahradě a zapu? těných do p?dy. Byl sledován r?st p?edplodin a následných rostlin v po?áte?ních fá zích r?stu. P?ed vysetím následných rostlin byla stanovena u odebraných vzork? zemin intensita respirace, okam?itá vlhkost a obsah fyziologicky p?ístupného dusíku, fosforu a draslíku. Ve v?ech zkou?ených kombinacích byly následné rostliny ovlivněny kultivací p?edplodiny a následným ulo?ením zeminy. Změny r?stu následných rostlin ?áste? ně korelovaly s obsahem fyziologicky p?ístupného dusíku v zemině. Podle jejich charakteru v?ak bylo té? patrno, ?e se na nich podílely i allelopatické faktory. Zna?ně inhibi?ně p?sobil mák na cukrovku, mé ně inhibi?ně p?sobila ho??ice na je?men a cibule na ?epku. ??inek konopí na ?ito byl promě nný s dobou ulo?ení zeminy. Změny v obsahu fyziologicky p?ístupného dusíku, fosforu a draslíku v pokusné zemině neodpovídaly . mno?ství narostlé p?edplodiny, co? bylo podmíněno pou?itou kultiva?ní metodikou. Poměrně rychlé doplňování p?edplodinou vy?erpaných dusi?nan? v pokusné zemině s dobou jejího ulo?ení bylo pravděpodobně podmíněno nitrifikacními procesy. Podle stanovených změn intensity respirace pokusné zeminy se na allelopatickém ovlivnění mohla podílet i pudní mikroflora.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号