首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
群体感应(quorum sensing, QS)是一种广泛存在于多种微生物中的胞间通信系统,细菌产生的自诱导物随着种群密度的增加而积累,诱导细菌对种群密度的响应,调节生物膜的形成或特定基因的表达。近年来,随着群体感应系统原理与关键元件的逐渐清晰,应用合成生物学手段进行多技术联合以及多系统间正交性设计具有极大的发展潜力,群体感应系统已成为合成生物学家动态调控胞间通信常用的重要手段之一。在群体感应是细胞-细胞间通信系统的基础上,对多种群体感应系统的联合设计在生物基化学品生产中自动化调控的研究进展进行综述;并针对群体感应系统在生物电化学转化领域实现双向生物信息交流的应用进行总结;同时归纳了医学领域中群体感应系统的动态调控功能与多种疾病诊断及治疗结合的研究进展,讨论了群体感应系统在多细胞通信和实际应用等方面的发展前景。  相似文献   

2.
3.
4.
5.
合成生物学技术采用工程化设计理念,对生物体进行有目标的设计、改造乃至重新合成,对重塑非自然功能的“人造生命”具有重要意义。噬菌体重组系统具有高效、精确和广谱适用性等特点,在基因工程、代谢工程以及生物治疗等合成生物学领域得到了广泛的应用。从基因电路、体内遗传改造和体外重组等方面全面阐述了噬菌体重组系统在合成生物学研究的现状及热点,对当前该系统的局限性进行了探讨,并就未来的研究和发展趋势进行了展望。  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
Systems biology is today such a widespread discipline that it becomes difficult to propose a clear definition of what it really is. For some, it remains restricted to the genomic field. For many, it designates the integrated approach or the corpus of computational methods employed to handle the vast amount of biological or medical data and investigate the complexity of the living. Although defining systems biology might be difficult, on the other hand its purpose is clear: systems biology, with its emerging subfields systems medicine and systems pharmacology, clearly aims at making sense of complex observations/experimental and clinical datasets to improve our understanding of diseases and their treatments without putting aside the context in which they appear and develop. In this short review, we aim to specifically focus on these new subfields with the new theoretical tools and approaches that were developed in the context of cancer. Systems pharmacology and medicine now give hope for major improvements in cancer therapy, making personalized medicine closer to reality. As we will see, the current challenge is to be able to improve the clinical practice according to the paradigm shift of systems sciences.  相似文献   

15.
16.
合成生物学是一门21世纪生物学的新兴学科,它着眼生物科学与工程科学的结合,把生物系统当作工程系统"从下往上"进行处理,由"单元"(unit)到"部件"(device)再到"系统"(system)来设计,修改和组装细胞构件及生物系统.合成生物学是分子和细胞生物学、进化系统学、生物化学、信息学、数学、计算机和工程等多学科交叉的产物.目前研究应用包括两个主要方面:一是通过对现有的、天然存在的生物系统进行重新设计和改造,修改已存在的生物系统,使该系统增添新的功能.二是通过设计和构建新的生物零件、组件和系统,创造自然界中尚不存在的人工生命系统.合成生物学作为一门建立在基因组方法之上的学科,主要强调对创造人工生命形态的计算生物学与实验生物学的协同整合.必须强调的是,用来构建生命系统新结构、产生新功能所使用的组件单元既可以是基因、核酸等生物组件,也可以是化学的、机械的和物理的元件.本文跟踪合成生物学研究及应用,对其在DNA水平编程、分子修饰、代谢途径、调控网络和工业生物技术等方面的进展进行综述.  相似文献   

17.
18.
Synthetic biology is a cutting‐edge area of research that holds the promise of unprecedented health benefits. However, in tandem with these large prospective benefits, synthetic biology projects entail a risk of catastrophic consequences whose severity may exceed that of most ordinary human undertakings. This is due to the peculiar nature of synthetic biology as a ‘threshold technology’ which opens doors to opportunities and applications that are essentially unpredictable. Fears about these potentially unstoppable consequences have led to declarations from civil society groups calling for the use of a precautionary principle to regulate the field. Moreover, the principle is prevalent in law and international agreements. Despite widespread political recognition of a need for caution, the precautionary principle has been extensively criticized as a guide for regulatory policy. We examine a central objection to the principle: that its application entails crippling inaction and incoherence, since whatever action one takes there is always a chance that some highly improbable cataclysm will occur. In response to this difficulty, which we call the ‘precautionary paradox,’ we outline a deliberative means for arriving at threshold of probability below which potential dangers can be disregarded. In addition, we describe a Bayesian mechanism with which to assign probabilities to harmful outcomes. We argue that these steps resolve the paradox. The rehabilitated PP can thus provide a viable policy option to confront the uncharted waters of synthetic biology research.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号