首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
The recognition that animals sense the world in a different way than we do has unlocked important lines of research in ecology and evolutionary biology. In practice, the subjective study of natural stimuli has been permitted by perceptual spaces, which are graphical models of how stimuli are perceived by a given animal. Because colour vision is arguably the best‐known sensory modality in most animals, a diversity of colour spaces are now available to visual ecologists, ranging from generalist and basic models allowing rough but robust predictions on colour perception, to species‐specific, more complex models giving accurate but context‐dependent predictions. Selecting among these models is most often influenced by historical contingencies that have associated models to specific questions and organisms; however, these associations are not always optimal. The aim of this review is to provide visual ecologists with a critical perspective on how models of colour space are built, how well they perform and where their main limitations are with regard to their most frequent uses in ecology and evolutionary biology. We propose a classification of models based on their complexity, defined as whether and how they model the mechanisms of chromatic adaptation and receptor opponency, the nonlinear association between the stimulus and its perception, and whether or not models have been fitted to experimental data. Then, we review the effect of modelling these mechanisms on predictions of colour detection and discrimination, colour conspicuousness, colour diversity and diversification, and for comparing the perception of colour traits between distinct perceivers. While a few rules emerge (e.g. opponent log–linear models should be preferred when analysing very distinct colours), in general model parameters still have poorly known effects. Colour spaces have nonetheless permitted significant advances in ecology and evolutionary biology, and more progress is expected if ecologists compare results between models and perform behavioural experiments more routinely. Such an approach would further contribute to a better understanding of colour vision and its links to the behavioural ecology of animals. While visual ecology is essentially a transfer of knowledge from visual sciences to evolutionary ecology, we hope that the discipline will benefit both fields more evenly in the future.  相似文献   

6.
方伟伟  于顺利 《生态学杂志》2013,32(8):2238-2244
总结了果实生态学的概念及主要研究内容,对国内外的果实生态学研究领域的进展进行了综述,分析了这些研究尚存在的不足之处,并指出了未来研究的科学问题.迄今为止,果实生态学在果实与种子的关系、果实颜色与环境、果实化学成分与环境、群落果实构成式样的地理分布特征、果实及食果动物的协同进化等方面已经取得了若干进展.果实重量谱等物理性状的空间分异格局及机理、果实化学成分的时空变异格局、果实类型的组成式样及大尺度地理分布格局及其机制的探讨、果实传播与食果动物的协同进化等是未来亟待开展的工作.  相似文献   

7.
8.
9.
Many authors, including paleobiologists, cladists and so on, adopt a nested hierarchical viewpoint to examine the relationships among different levels of biological organization. Furthermore, species are often considered to be unique entities in functioning evolutionary processes and one of the individuals forming a nested hierarchy.I have attempted to show that such a hierarchical view is inadequate in evolutionary biology. We should define units depending on what we are trying to explain. Units that play an important role in evolution and ecology do not necessarily form a nested hierarchy. Also the relationships among genealogies at different levels are not simply nested. I have attempted to distinguish the different characteristics of passages when they are used for different purposes of explanation. In my analysis, species and monophyletic taxa cannot be uniquely defined as single units that function in ecological and evolutionary processes.The view discussed in this paper may provide a more general basis for testing competing theories in evolution, and provide new insights for future empirical studies.  相似文献   

10.
11.
12.
Molecular phylogenetics, interspecific comparisons, and assisted reproductive techniques are recent approaches to understanding and facilitating conservation of endangered species. This paper reviews the contribution of these approaches to a small but well-studied group of mammals, deer, many of which are endangered in the wild. Conservation efforts require a comprehensive understanding of the biology and history of these animals. The value of assisted reproductive technologies for conservation of deer has received increased awareness especially for captive populations. Such breeding programmes are designed to assist propagation of threatened species and to maximize genetic diversity within populations through the movement of genetic material across the globe, but will only be successful if we understand the genetic and reproductive potential of various lineages. Here we discuss the phylogenetic status of deer, the distinctiveness and evolution of their reproductive patterns, and current approaches for improving the success of controlled breeding programmes for the conservation of endangered lineages. Only by combining both theoretical and practical approaches to conservation efforts can we hope to salvage the remaining organismal diversity of our planet.  相似文献   

13.
A synthesis between community ecology and evolutionary biology is emerging that identifies how genetic variation and evolution within one species can shape the ecological properties of entire communities and, in turn, how community context can govern evolutionary processes and patterns. This synthesis incorporates research on the ecology and evolution within communities over short timescales (community genetics and diffuse coevolution), as well as macroevolutionary timescales (community phylogenetics and co-diversification of communities). As we discuss here, preliminary evidence supports the hypothesis that there is a dynamic interplay between ecology and evolution within communities, yet researchers have not yet demonstrated convincingly whether, and under what circumstances, it is important for biologists to bridge community ecology and evolutionary biology. Answering this question will have important implications for both basic and applied problems in biology.  相似文献   

14.
Summary If one investigates a process that has several causes but assumes that it has only one cause, one risks ruling out important causal factors. Three mechanisms account for this mistake: either the significance of the single cause under test is masked by noise contributed by the unsuspected and uncontrolled factors, or the process appears only when two or more causes interact, or the process appears when there are present any of a number of sufficient causes which are not mutally exclusive. In ecology and evolutionary biology, experiments usually test single factor hypotheses, and many scientists apparently believe that hypotheses incorporating several factors are so much more difficult to test that to do so would not be practical. We discuss several areas in ecology and evolutionary biology in which the presupposition of simple causation has apparently impeded progress. We also examine a more mature field, the study of atherosclerosis, in which single factor studies did significantly delay progress towards understanding what now appears to be a multifactor process. The problem has three solutions: either factorial experiments, dynamic models that make quantitative predictions, response-surface methods, or all three. In choosing a definition for cause, we make a presupposition that profoundly influences subsequent observations and experimental designs. Alternative definitions of causation should be considered as contributing to potential cures for research problems.Order of authorship decided by the flip of a coin.  相似文献   

15.
Disparities remain in the representation of marginalized students in STEM. Classroom‐based experiential learning opportunities can increase student confidence and academic success; however, the effectiveness of extending learning to outdoor settings is unknown. Our objectives were to examine (a) demographic gaps in ecology and evolutionary biology (EEB) major completion, college graduation, and GPAs for students who did and did not enroll in field courses, (b) whether under‐represented demographic groups were less likely to enroll in field courses, and (c) whether under‐represented demographic groups were more likely to feel increased competency in science‐related tasks (hereafter, self‐efficacy) after participating in field courses. We compared the relationships among academic success measures and demographic data (race/ethnicity, socioeconomic status, first‐generation, and gender) for UC Santa Cruz undergraduate students admitted between 2008 and 2019 who participated in field courses (N = 941 students) and who did not (N = 28,215 students). Additionally, we administered longitudinal surveys to evaluate self‐efficacy gains during field‐based versus classroom‐based courses (N = 570 students). We found no differences in the proportion of students matriculating at the university as undecided, proposed EEB, or proposed other majors across demographic groups. However, five years later, under‐represented students were significantly less likely to graduate with EEB degrees, indicating retention rather than recruitment drives disparities in representation. This retention gap is partly due to a lower rate of college completion and partly through attrition to other majors. Although under‐represented students were less likely to enroll in field courses, field courses were associated with higher self‐efficacy gains, higher college graduation rates, higher EEB major retention, and higher GPAs at graduation. All demographic groups experienced significant increases in self‐efficacy during field‐based but not lecture‐based courses. Together, our findings suggest that increasing the number of field courses and actively facilitating access to students from under‐represented groups can be a powerful tool for increasing STEM diversity.  相似文献   

16.
恢复生态学的理论与研究进展   总被引:5,自引:0,他引:5  
任海  王俊  陆宏芳 《生态学报》2014,34(15):4117-4124
简介了恢复生态学中常用的生态学原理,以及在其自身发展过程中产生的状态过渡模型及阈值、集合规则、参考生态系统、人为设计和自我设计、适应性恢复等理论;从生境、种群、群落、生态系统、景观尺度层面,以及将全球变化与人类干扰纳入生态恢复范畴等方面介绍了恢复生态学的研究进展与主流认识。在此基础上,对恢复生态学的发展障碍与发展趋势进行了评述。  相似文献   

17.
18.
Code review increases reliability and improves reproducibility of research. As such, code review is an inevitable step in software development and is common in fields such as computer science. However, despite its importance, code review is noticeably lacking in ecology and evolutionary biology. This is problematic as it facilitates the propagation of coding errors and a reduction in reproducibility and reliability of published results. To address this, we provide a detailed commentary on how to effectively review code, how to set up your project to enable this form of review and detail its possible implementation at several stages throughout the research process. This guide serves as a primer for code review, and adoption of the principles and advice here will go a long way in promoting more open, reliable, and transparent ecology and evolutionary biology.  相似文献   

19.
20.
A general concept for thinking about causality facilitates swift comprehension of results, and the vocabulary that belongs to the concept is instrumental in cross‐disciplinary communication. The causal pie model has fulfilled this role in epidemiology and could be of similar value in evolutionary biology and ecology. In the causal pie model, outcomes result from sufficient causes. Each sufficient cause is made up of a “causal pie” of “component causes”. Several different causal pies may exist for the same outcome. If and only if all component causes of a sufficient cause are present, that is, a causal pie is complete, does the outcome occur. The effect of a component cause hence depends on the presence of the other component causes that constitute some causal pie. Because all component causes are equally and fully causative for the outcome, the sum of causes for some outcome exceeds 100%. The causal pie model provides a way of thinking that maps into a number of recurrent themes in evolutionary biology and ecology: It charts when component causes have an effect and are subject to natural selection, and how component causes affect selection on other component causes; which partitions of outcomes with respect to causes are feasible and useful; and how to view the composition of a(n apparently homogeneous) population. The diversity of specific results that is directly understood from the causal pie model is a test for both the validity and the applicability of the model. The causal pie model provides a common language in which results across disciplines can be communicated and serves as a template along which future causal analyses can be made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号