首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Voltage-gated ion channels regulate the electric activity of excitable tissues, such as the heart and brain. Therefore, treatment for conditions of disturbed excitability is often based on drugs that target ion channels. In this study of a voltage-gated K channel, we propose what we believe to be a novel pharmacological mechanism for how to regulate channel activity. Charged lipophilic substances can tune channel opening, and consequently excitability, by an electrostatic interaction with the channel's voltage sensors. The direction of the effect depends on the charge of the substance. This was shown by three compounds sharing an arachidonyl backbone but bearing different charge: arachidonic acid, methyl arachidonate, and arachidonyl amine. Computer simulations of membrane excitability showed that small changes in the voltage dependence of Na and K channels have prominent impact on excitability and the tendency for repetitive firing. For instance, a shift in the voltage dependence of a K channel with −5 or +5 mV corresponds to a threefold increase or decrease in K channel density, respectively. We suggest that electrostatic tuning of ion channel activity constitutes a novel and powerful pharmacological approach with which to affect cellular excitability.  相似文献   

2.
This study used the transcranial magnetic stimulation/motor evoked potential (TMS/MEP) technique to pinpoint when the automatic tendency to mirror someone else''s action becomes anticipatory simulation of a complementary act. TMS was delivered to the left primary motor cortex corresponding to the hand to induce the highest level of MEP activity from the abductor digiti minimi (ADM; the muscle serving little finger abduction) as well as the first dorsal interosseus (FDI; the muscle serving index finger flexion/extension) muscles. A neuronavigation system was used to maintain the position of the TMS coil, and electromyographic (EMG) activity was recorded from the right ADM and FDI muscles. Producing original data with regard to motor resonance, the combined TMS/MEP technique has taken research on the perception-action coupling mechanism a step further. Specifically, it has answered the questions of how and when observing another person''s actions produces motor facilitation in an onlooker''s corresponding muscles and in what way corticospinal excitability is modulated in social contexts.  相似文献   

3.
Chemotherapy-induced neurotoxicity is a serious consequence of cancer treatment, which occurs with some of the most commonly used chemotherapies1,2. Chemotherapy-induced peripheral neuropathy produces symptoms of numbness and paraesthesia in the limbs and may progress to difficulties with fine motor skills and walking, leading to functional impairment. In addition to producing troubling symptoms, chemotherapy-induced neuropathy may limit treatment success leading to dose reduction or early cessation of treatment. Neuropathic symptoms may persist long-term, leaving permanent nerve damage in patients with an otherwise good prognosis3. As chemotherapy is utilised more often as a preventative measure, and survival rates increase, the importance of long-lasting and significant neurotoxicity will increase.There are no established neuroprotective or treatment options and a lack of sensitive assessment methods. Appropriate assessment of neurotoxicity will be critical as a prognostic factor and as suitable endpoints for future trials of neuroprotective agents. Current methods to assess the severity of chemotherapy-induced neuropathy utilise clinician-based grading scales which have been demonstrated to lack sensitivity to change and inter-observer objectivity4. Conventional nerve conduction studies provide information about compound action potential amplitude and conduction velocity, which are relatively non-specific measures and do not provide insight into ion channel function or resting membrane potential. Accordingly, prior studies have demonstrated that conventional nerve conduction studies are not sensitive to early change in chemotherapy-induced neurotoxicity4-6. In comparison, nerve excitability studies utilize threshold tracking techniques which have been developed to enable assessment of ion channels, pumps and exchangers in vivo in large myelinated human axons7-9.Nerve excitability techniques have been established as a tool to examine the development and severity of chemotherapy-induced neurotoxicity10-13. Comprising a number of excitability parameters, nerve excitability studies can be used to assess acute neurotoxicity arising immediately following infusion and the development of chronic, cumulative neurotoxicity. Nerve excitability techniques are feasible in the clinical setting, with each test requiring only 5 -10 minutes to complete. Nerve excitability equipment is readily commercially available, and a portable system has been devised so that patients can be tested in situ in the infusion centre setting. In addition, these techniques can be adapted for use in multiple chemotherapies.In patients treated with the chemotherapy oxaliplatin, primarily utilised for colorectal cancer, nerve excitability techniques provide a method to identify patients at-risk for neurotoxicity prior to the onset of chronic neuropathy. Nerve excitability studies have revealed the development of an acute Na+ channelopathy in motor and sensory axons10-13. Importantly, patients who demonstrated changes in excitability in early treatment were subsequently more likely to develop moderate to severe neurotoxicity11. However, across treatment, striking longitudinal changes were identified only in sensory axons which were able to predict clinical neurological outcome in 80% of patients10. These changes demonstrated a different pattern to those seen acutely following oxaliplatin infusion, and most likely reflect the development of significant axonal damage and membrane potential change in sensory nerves which develops longitudinally during oxaliplatin treatment10. Significant abnormalities developed during early treatment, prior to any reduction in conventional measures of nerve function, suggesting that excitability parameters may provide a sensitive biomarker.  相似文献   

4.
 We adapt a simple two-component model of a plankton ecosystem to account for the life spans of individual predatory organisms. We investigate the system’s short-term dynamics, in particular its excitability, and its long-term dynamics, and show how both can be highly sensitive to initial conditions. We discover that this effect is enhanced by imposing age structure on the system. Received: 21 June 1996 / Revised version: 19 October 1998  相似文献   

5.
We study how functional constraints bound and shape evolution through an analysis of mammalian voltage-gated sodium channels. The primary function of sodium channels is to allow the propagation of action potentials. Since Hodgkin and Huxley, mathematical models have suggested that sodium channel properties need to be tightly constrained for an action potential to propagate. There are nine mammalian genes encoding voltage-gated sodium channels, many of which are more than approximately 90% identical by sequence. This sequence similarity presumably corresponds to similarity of function, consistent with the idea that these properties must be tightly constrained. However, the multiplicity of genes encoding sodium channels raises the question: why are there so many? We demonstrate that the simplest theoretical constraints bounding sodium channel diversity--the requirements of membrane excitability and the uniqueness of the resting potential--act directly on constraining sodium channel properties. We compare the predicted constraints with functional data on mammalian sodium channel properties collected from the literature, including 172 different sets of measurements from 40 publications, wild-type and mutant, under a variety of conditions. The data from all channel types, including mutants, obeys the excitability constraint; on the other hand, channels expressed in muscle tend to obey the constraint of a unique resting potential, while channels expressed in neuronal tissue do not. The excitability properties alone distinguish the nine sodium channels into four different groups that are consistent with phylogenetic analysis. Our calculations suggest interpretations for the functional differences between these groups.  相似文献   

6.
7.
An epileptic seizure is regularly followed by a postictal depression and then by a phase of increased excitability. The time course of these two phases was described for two types of epileptic after-discharges induced by stimulation of the hippocampus and/or the thalamus in acute experiments in rats. Using hippocampal stimulation, an interval of 10 min was necessary for induction of the second self-sustained after-discharge (SSAD) of the same duration as the first one. Significant prolongation of the second SSAD appeared with a 30-min interstimulation interval. The spike-and-wave rhythm induced by stimulation of thalamic nuclei exhibited a shorter refractory phase - up to 5 min - and also the facilitation took place sooner: with 15-min intervals a significant increase in duration of SSAD was recovered. The results are discussed in connection with the kindling model of epilepsy.  相似文献   

8.
In pancreatic β-cells, K,ATP channels respond to changes in glucose to regulate cell excitability and insulin release. Confirming a high sensitivity of electrical activity to K,ATP activity, mutations that cause gain of K,ATP function cause neonatal diabetes. Our aim was to quantitatively assess the contribution of K,ATP current to the regulation of glucose-dependent bursting by reproducing experimentally observed changes in excitability when K,ATP conductance is altered by genetic manipulation. A recent detailed computational model of single cell pancreatic β-cell excitability reproduces the β-cell response to varying glucose concentrations. However, initial simulations showed that the model underrepresents the significance of K,ATP activity and was unable to reproduce K,ATP conductance-dependent changes in excitability. By altering the ATP and glucose dependence of the L-type Ca2+ channel and the Na-K ATPase to better fit experiment, appropriate dependence of excitability on K,ATP conductance was reproduced. Because experiments were conducted in islets, which contain cell-to-cell variability, we extended the model from a single cell to a three-dimensional model (10×10×10 cell) islet with 1000 cells. For each cell, the conductance of the major currents was allowed to vary as was the gap junction conductance between cells. This showed that single cell glucose-dependent behavior was then highly variable, but was uniform in coupled islets. The study highlights the importance of parameterization of detailed models of β-cell excitability and suggests future experiments that will lead to improved characterization of β-cell excitability and the control of insulin secretion.  相似文献   

9.
Evolutionary theories posit that emotions prime organisms for action. This study examined whether corticospinal excitability (CSE) is modulated by the emotional valence of a to-be-grasped stimulus. CSE was estimated based on the amplitude of motor evoked potentials (MEPs) elicited using transcranial magnetic stimulation (TMS) and recorded on the first dorsal interosseous (FDI) muscle. Participants were instructed to grasp (ACTION condition) or just look at (NO-ACTION condition) unpleasant, pleasant and neutral stimuli. TMS pulses were applied randomly at 500 or 250 ms before a go signal. MEP amplitudes were normalized within condition by computing a ratio for the emotion-laden stimuli by reference to the neutral stimuli. A divergent valence effect was observed in the ACTION condition, where the CSE ratio was higher during the preparation to grasp unpleasant compared to pleasant stimuli. In addition, the CSE ratio was lower for pleasant stimuli during the ACTION condition compared to the NO-ACTION condition. Altogether, these results indicate that motor preparation is selectively modulated by the valence of the stimulus to be grasped. The lower CSE for pleasant stimuli may result from the need to refrain from executing an imminent action.  相似文献   

10.
11.
12.
In contrast to the large volume of data supporting the dependence of cardiac excitability and phasic contractility on external Na, Van der Kloot and Rubin (1962) and Singh (1962) have reported the persistence of both electrical and phasic mechanical activity in frog atrial and ventricular preparations soaked in isotonic sucrose solutions. The acute ionic dependence of excitability and contractility in small frog atrial trabeculae has been investigated with the conclusion that excitability and phasic contractions may continue for extended periods of time in sucrose media if the extracellular ionic concentrations remain above 2% of normal. This behavior is attributed to the slow exchange properties of the cell surfaces of the frog cardiac trabeculae and the antagonistic effects of Na, K, and Ca ions on both membrane excitability and fiber contractility.  相似文献   

13.
Dissociated ectodermal cells of the early newt gastrula which have been treated with CMF (Ca-Mg-free saline) for 5 hr differentiate into muscle cells when cultured in HFCS (heated fetal calf serum) for up to 9-12 days. Similarly dissociated cells placed into FCS (fetal calf serum) culture differentiate into epidermis. Differences in cell-cluster formation have been found between HFCS and FCS in early cell cultures (6 hr), and membrane excitability phenomena associated with the differentiation of these clusters into the muscle cells or epidermal cells have been investigated, respectively. The HFCS cultures consist of cell clusters which have few of microvilli at their surfaces and which form loose contacts by means of lamellipodia. FCS cultures consist of cell clusters which have numerous microvilli at their surfaces and which make tight contacts between cells by means of ridge-structure precursors. The different reaggregation pattern of dissociated ectoderm cells in HFCS reflects changes in the cell membrane surface induced by HFCS. The sequential genesis of action potentials in cells destined to form muscle cells in HFCS is very similar to those produced by somitic muscle cells in vivo and their ionic dependence for generating action potentials is related to epidermal action potentials in vitro (FCS).  相似文献   

14.
In pancreatic β-cells, K,ATP channels respond to changes in glucose to regulate cell excitability and insulin release. Confirming a high sensitivity of electrical activity to K,ATP activity, mutations that cause gain of K,ATP function cause neonatal diabetes. Our aim was to quantitatively assess the contribution of K,ATP current to the regulation of glucose-dependent bursting by reproducing experimentally observed changes in excitability when K,ATP conductance is altered by genetic manipulation. A recent detailed computational model of single cell pancreatic β-cell excitability reproduces the β-cell response to varying glucose concentrations. However, initial simulations showed that the model underrepresents the significance of K,ATP activity and was unable to reproduce K,ATP conductance-dependent changes in excitability. By altering the ATP and glucose dependence of the L-type Ca2+ channel and the Na-K ATPase to better fit experiment, appropriate dependence of excitability on K,ATP conductance was reproduced. Because experiments were conducted in islets, which contain cell-to-cell variability, we extended the model from a single cell to a three-dimensional model (10×10×10 cell) islet with 1000 cells. For each cell, the conductance of the major currents was allowed to vary as was the gap junction conductance between cells. This showed that single cell glucose-dependent behavior was then highly variable, but was uniform in coupled islets. The study highlights the importance of parameterization of detailed models of β-cell excitability and suggests future experiments that will lead to improved characterization of β-cell excitability and the control of insulin secretion.  相似文献   

15.
16.
It has been shown experimentally that the crustacean motor axon is supernormally excitable following a train of action potentials (Zucker 1974). Such a phenomenon can lead to recruitment of terminals which are unexcited at low rates of stimulation. Although currents underlying the crustacean motor axon have been characterized (Connor et al. 1977), it is not known whether this membrane model accounts for a supernormal period, what might cause superexcitablity in this model, or how excitability might change during repetitive stimulation. In present study, it is demonstrated that the crustacean motor axon model does predict a supernormal period, that the supernormal period results from slow recovery from inactivation of the transient potassium, or A, current, and that supernormal excitability is enhanced by repetitive stimulation.  相似文献   

17.
18.
19.
20.
Excitability Changes of the Mauthner Cell during Collateral Inhibition   总被引:2,自引:0,他引:2  
Excitability changes during collateral inhibition of the goldfish Mauthner cell (M cell) were measured directly by stimulating the cell with current pulses applied through an intracellular electrode. Excitability was suppressed during the extrinsic hyperpolarizing potential (EHP) as well as during the collateral IPSP. The inhibitory effect of the EHP was shown to be comparable in intensity to the effect of the IPSP. Excitability changes in the M cell during collateral IPSP depended on changes in the membrane conductance as well as in the membrane potential. Some simple equations are advanced which describe the excitability change during the IPSP in terms of changes in membrane potential and conductance. It was also found that invasion of antidromic impulses into the M cell was suppressed during the EHP, but not during the collateral IPSP. Conductance increase during the IPSP did not interfere with the invasion of antidromic impulses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号