首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
To understand the contemporary process of desertification in the Mu-Us Sandy Land, China, we assessed the current status of desertification from satellite images. We analyzed the effect of land use by comparing desertification images and GIS-based thematic data. Socioeconomic factors were studied through interviews with local people. The desertified area ratio in each village was related to the sand dune ratio. Desertification in this region was affected by the activity of sand dunes. The revegetated area ratio had a close relationship with the cropland ratio. The development of cropland and surrounding woods contributed to revegetation of desertified land. Desertified areas were distributed mainly in pastoral regions. Critical carrying capacity of grassland for sheep and goats was approximately 2 head/ha. High population density of goats was evident in the severely desertified ranges. Goats were increasingly introduced to earn money through modernization, but they overgrazed fenced pastures. Further environmental education is needed to promote sustainable land use.  相似文献   

2.
Rangelands are among the most extensive anthropogenic landscapes on earth, supporting nearly 500 million people. Disagreements over the extent and severity of rangeland degradation affect pastoralist livelihoods, especially when impacts of drought and over-grazing are confounded. While vegetation indices (such as NDVI, or Normalized Difference Vegetation Index) derived from remotely sensed imagery are often used to monitor rangelands, their strategic integration with local ecological knowledge (LEK) is under-appreciated. Here, we explore these complementary approaches in Kyrgyzstan’s pasture-rich province of Naryn, where disagreements regarding pasture degradation could greatly benefit from additional information. We examine a time series of MODIS satellite imagery (2000–2015) to characterize browning trends in vegetation as well as to distinguish between climate- and grazing-induced trends. We also compare and contrast measured trends with LEK perceptions of pasture degradation. To do so, we first examine statistical trends in NDVI as well as in NDVI residuals after de-trending with meteorological data. Second, we use participatory mapping to identify areas local pasture managers believe are overgrazed, a particularly useful approach in lieu of reliable historical stocking rates for livestock in this region. Lastly, we compare the strengths and weaknesses of LEK and remote sensing for landscape monitoring.Browning trends were widespread as declining trends in NDVI (and NDVI residuals) covered 24% (and 9%) of the landscape, respectively. Local managers’ perceptions of pasture degradation better reflected trends seen in NDVI than in climate-controlled NDVI residuals, suggesting patterns in the latter are less apparent to managers. Our approach demonstrated great potential for the integration of two inexpensive and effective methods of rangeland monitoring well-suited to the country’s needs. Despite limitations due to terrain, our approach was most successful within the semi-arid steppe where pasture degradation is believed to be most severe. In many parts of the world, sources of long-term spatially extensive data are rare or even non-existent. Thus, paired LEK and remote sensing can contribute to comprehensive and informative assessments of land degradation, especially where contentious management issues intersect with sparse data availability. LEK is a valuable source of complementary information to remote sensing and should be integrated more routinely and formally into landscape monitoring. To aid this endeavor, we synthesize advice for linking LEK and remote sensing across diverse landscape situations.  相似文献   

3.
Dual‐scale analyses assessing farm‐scale patterns of ecological change and landscape‐scale patterns of change in vegetation cover and animal distribution are presented from ecological transect studies away from waterpoints, regional remotely sensed analysis of vegetation cover and animal numbers across the southern Kalahari, Botswana. Bush encroachment is prevalent in semi‐arid sites where Acacia mellifera Benth. is widespread in communal areas and private ranches, showing that land tenure changes over the last 40 years have not avoided rangeland degradation. Herbaceous cover is dominated in intensively grazed areas by the annual grass Schmidtia kalahariensis Stent and in moderately grazed areas by the perennial grass Eragrostis lehmanniana Nees. Nutritious perennial grass species including Eragrostis pallens Hack. Ex Schinz remain prevalent in Wildlife Management Areas. Other ecological changes include the invasion of the exotic Prosopis glandulosa Torr. and dense stands of Rhigozum trichotomum Kuntze. in the arid southwest. Regional patterns of wildlife species show that the expansion of cattleposts and fenced ranches has led to large areas of low wildlife conservation value even in areas where cattle production is not practiced. Findings show the need for integrated landscape‐scale planning of land use if the ecological value and biodiversity of the southern Kalahari is to be retained.  相似文献   

4.
Since the late 1950s, governmental rangeland policies have changed the grazing management on the Tibetan Plateau (TP). Increasing grazing pressure and, since the 1980s, the privatization and fencing of pastures near villages has led to land degradation, whereas remote pastures have recovered from stronger overgrazing. To clarify the effect of moderate grazing on the carbon (C) cycle of the TP, we investigated differences in below‐ground C stocks and C allocation using in situ 13CO2 pulse labeling of (i) a montane Kobresia winter pasture of yaks, with moderate grazing regime and (ii) a 7‐year‐old grazing exclosure plot, both in 3440 m asl. Twenty‐seven days after the labeling, 13C incorporated into shoots did not differ between the grazed (43% of recovered 13C) and ungrazed (38%) plots. In the grazed plots, however, less C was lost by shoot respiration (17% vs. 42%), and more was translocated below‐ground (40% vs. 20%). Within the below‐ground pools, <2% of 13C was incorporated into living root tissue of both land use types. In the grazed plots about twice the amount of 13C remained in soil (18%) and was mineralized to CO2 (20%) as compared to the ungrazed plots (soil 10%; CO2 9%). Despite the higher contribution of root‐derived C to CO2 efflux, total CO2 efflux did not differ between the two land use types. C stocks in the soil layers 0–5 and 5–15 cm under grazed grassland were significantly larger than in the ungrazed grassland. However, C stocks below 15 cm were not affected after 7 years without grazing. We conclude that the larger below‐ground C allocation of plants, the larger amount of recently assimilated C remaining in the soil, and less soil organic matter‐derived CO2 efflux create a positive effect of moderate grazing on soil C input and C sequestration.  相似文献   

5.
长江源区土地覆盖变化与草地退化格局的时空分异   总被引:1,自引:0,他引:1  
基于野外调查、遥感影像和统计资料,分析了1987-2007年长江源头地区土地覆盖变化和草地退化格局的时空分异特点,并从海拔、坡度和坡向3方面探讨了导致长江源区草地生态环境变化的主要自然因素.结果表明: 研究期间,长江源头地区土地类型破碎化整体呈增加趋势,自然地理条件和气候变化是导致土地格局变化的主要驱动因素;不同海拔草地退化面积差异显著,研究区草地退化主要发生在海拔4800~5100 m范围内,且退化面积随海拔的升高呈增加趋势,退化面积比重在不同坡度和坡向的差异较大.1987-2007年,长江源头地区气候呈暖干化趋势,区域土地覆盖类型空间结构变化明显;不同坡向、坡度和海拔的草地退化分布格局与高寒环境和人为干扰的格局基本一致,高寒环境和气候演化对草地生态系统格局起决定作用.  相似文献   

6.
Land‐use change has resulted in rangeland loss and degradation globally. These changes include conversion of native grasslands for row‐crop agriculture as well as degradation of remaining rangeland due to fragmentation and changing disturbance regimes. Understanding how these and other factors influence wildlife use of rangelands is important for conservation and management of wildlife populations. We investigated bat habitat associations in a working rangeland in southeastern North Dakota. We used Petterson d500x acoustic detectors to systematically sample bat activity across the study area on a 1‐km point grid. We identified calls using Sonobat autoclassification software. We detected five species using this working rangeland, which included Lasionycteris noctivagans (2,722 detections), Lasiurus cinereus (2,055 detections), Eptesicus fuscus (749 detections), Lasiurus borealis (62 detections), and Myotis lucifugus (1 detection). We developed generalized linear mixed‐effects models for the four most frequently detected species based on their ecology. The activity of three bat species increased with higher tree cover. While the scale of selection varied between the four species, all three investigated scales were explanatory for at least one bat species. The broad importance of trees to bats in rangelands may put their conservation needs at odds with those of obligate grassland species. Focusing rangeland bat conservation on areas that were treed prior to European settlement, such as riparian forests, can provide important areas for bat conservation while minimizing negative impacts on grassland species.  相似文献   

7.
不同草地所有权下家庭牧场生产效率比较分析   总被引:2,自引:0,他引:2  
选取了甘肃祁连山区肃南县春夏秋冬四季草场均已分配到户的15个牧户和天祝县夏秋草场或四季草场均为公共草场的15个农牧户,从草地生态系统生产功能的角度,通过野外调查、DEA模型(数据包络分析模型)分析,比较两地牧民草场面积,冷季补饲,牧工费,家庭劳动力等投入,出售活畜、毛、奶等畜产品的产出等项目,探讨不同的草地所有权下牧民生产效率平均值、效率分布的差异性以及影响生产效率的因素。结果显示:天祝县农牧民生产效率的平均值大于肃南县(P0.05),且天祝县牧户生产效率的分布优于肃南县。进一步分析得出造成牧业生产效率低的原因从大到小顺序为:补饲投入、能繁母畜、草场面积和劳动力投入。验证了草地所有权会影响家庭牧场生产效率的假设,并且就生产效率角度来说,不完全承包到户的草地所有权优于完全承包到户的。  相似文献   

8.
内蒙古锡林河流域植被退化的格局及驱动力分析   总被引:5,自引:2,他引:3       下载免费PDF全文
草地退化是中国北方草原面临的主要生态问题。该文以1984和2004年草原植被群落调查数据为主要依据, 以优势种、建群种和群落类型及其比例的变化作为主要指标, 并与20世纪80年代的植被类型图比较, 分析了内蒙古锡林河流域草地的退化趋势及其空间分布。根据流域内草地退化的实际情况, 将其分为未退化、轻度退化、中度退化、重度退化和极度退化5种退化类型。另外, 根据近20年前后草地植被变化的实际情况, 又划分了恢复和盐化两个类型。结果表明: 草地退化呈现明显的空间分布, 以锡林河为标志, 总体上从上游到下游退化程度逐渐加剧, 表现为浑善达克沙地进入锡林河的部分及沿河地区为重度退化, 锡林浩特市以北的区域, 尤其是流域的西北部, 已经达到了极度退化; 流域中部的白音锡勒牧场主要是中度退化; 轻度退化则均匀地分布于整个流域; 未退化类型多分布于锡林河的西部, 锡林河中下游地区由于农田退耕、草地围封出现了一定程度的恢复; 锡林浩特市以北沿锡林河植被的盐化程度较重。不同的植被类型退化程度也不同, 沙地灌丛植被轻度退化比例较高, 占植被的43%; 羊茅(Festuca ovina)草原和榆树(Ulmus pumila)疏林沙地中度退化草地的比重较高, 超过50%; 贝加尔针茅(Stipa baicalensis)草原和无芒雀麦(Bromus inermis)杂类草草甸的重度退化面积达50%以上; 极度退化比例较大的有克氏针茅(S. krylovii)草原和小叶锦鸡儿(Caragana microphylla)灌丛化草原。对于羊草(Leymus chinensis)草原, 以轻度和中度退化为主。导致不同区域和不同植被类型草地退化的原因也不尽相同, 从近20年的时间尺度来看, 过度放牧、不合理的居民点布局, 以及道路等是草地退化的主要人为驱动因子。研究结果还显示, 仅以生物量的变化来划分草地退化存在一定的局限性, 因此, 该文以群落优势种和建群种来表征草地的退化类型更具有客观性和实际的应用价值。  相似文献   

9.
藏北高原牧区人工草地建设布局的适宜性分析   总被引:2,自引:0,他引:2  
段呈  石培礼  张宪洲  宗宁 《生态学报》2019,39(15):5517-5526
人工草地是缓解天然草地退化和提升草地生产力的一种有效途径,但人工草地建设发展需注重区域布局、种植区划、经营管理等战略问题,尤其是在高寒牧区建立人工草地,目前还存在诸多值得探讨的科学问题。为此,选取藏北高原高寒牧区为研究区,基于遥感数据,土壤数据,气象数据,地形和土地利用数据,结合野外实地调查,从可利用土地资源角度考虑,通过分析藏北现有人工草地建设的立地条件,识别出区域适宜人工草地建设的潜在分布区,并与现有人工草地分布位置及其面积进行对比分析和验证,以期为区域未来人工草地建设布局提供科学指导。研究结果表明:在各种约束因子的限制下,藏北满足人工草地建设条件的适宜区域极其有限,难以发展大面积的人工草地建设工程。水热条件和海拔是限制区域人工草地建设的主要地理因素,尤其是那曲地区,绝大部分区域无法满足人工牧草生长活动的积温需求。因此,区域牧草种植规划中需重点考虑牧草品种的生物学特性。另一方面,在藏北高寒牧区建立人工草地必须慎重,今后人工草地种植规划还需要加强牧草的抗寒性和抗旱性研究,在人工草地的管理方面要特别关注已建人工草地的可持续性和稳定性,防止出现草地退化和沙化等问题。  相似文献   

10.
The spatial heterogeneity of vegetation and soil increases in response to land degradation caused by grazing mainly at a large spatial scale. This increase has been frequently associated with shrub invasion, but shrub invasion does not necessarily accompany land degradation. Instead, dominance by unpalatable forbs has been reported in some regions, but the spatial heterogeneity of such degraded rangeland has not been studied. We investigated the spatial heterogeneity of rangeland dominated by unpalatable forbs at a large spatial scale using Mongolian rangeland as an example. Spatial heterogeneity of the total vegetation cover and community heterogeneity were analyzed for three levels of land degradation. We found that the least-degraded site had homogeneous total vegetation cover and community, that the site with intermediate degradation exhibited low heterogeneity of the total vegetation cover but significant community type variation, and that the most degrade sites exhibited a periodic pattern of total vegetation cover as a result of a mixture of dense and sparse patches of unpalatable forbs. These different responses can be used to assess land degradation levels and may have potential to monitor land degradation at a large scale by satellite images.  相似文献   

11.
Two major components of global change: land‐use changes and intentional or accidental species introduction are threatening the conservation of native species worldwide. In particular, Mediterranean coastal areas are highly susceptible to the invasion of alien species and they also have experienced major changes in land use such as agricultural abandonment and urbanization. However, there has been little research done which quantitatively links biological invasions and the components of land‐use changes (i.e. number, trajectory and direction of the changes). We analysed the current distribution and abundance of Cortaderia selloana (Schultes et Schultes fil.) Asch. et Graebner, an alien ornamental species, in 332 fields in Aiguamolls de l'Empordà (Catalonia, NE Spain) and related the patterns of invasion to spatiotemporal data on land‐use changes from 1956 to 2003. Our aim was to determine which land uses had been more susceptible to C. selloana invasion during the last 5 years and to find out which components of land‐use changes triggered invasion. We found that 22.30% of the fields are currently invaded. In the last 5 years, fields have triplicated the total density of C. selloana. The presence of C. selloana decreases with the distance from urban areas. Invasion is over‐represented in pastures and old‐fields, and it has increased with time since abandonment. The presence of C. selloana was also associated to fields that had experienced many changes in land use in the last 46 years. The most heavily invaded fields were those that were pastures in 1956 and are now old fields in 2003. On average, the largest plants are found in agricultural field margins and in fields that had a disturbed land use both in 1956 and in 2003. Furthermore, pastures had the lowest proportion of reproductive plants. Overall, current C. selloana patterns of invasion can be explained by the historical legacy of land‐use changes.  相似文献   

12.
Macroclimatic niche properties derived from species distribution ranges are fundamental for projections of climate change impacts on biodiversity. However, it has been recognized that changes in regional or local distribution patterns also depend on interactions with land use. The reliability and transferability of large scale geographic predictions to small scale plant performance need to be tested experimentally. Thus, we asked how grassland plant species pairs with different macroclimatic niche properties respond to increased spring temperature and decrease summer precipitation in three different land‐use types. An experiment was carried out in the framework of the German Biodiversity Exploratories simulating climate change in 45 experimental plots in three geographical regions (Schorfheide‐Chorin, Hainich‐Dün, Schwäbische Alb) and three grassland management types (meadow, pasture, mown pasture). We planted six plant species as phytometers, each two of them representing congeneric species with contrasting macroclimatic niches and recorded plant survival and growth over 1 year. To quantify the species macroclimatic niches with respect to drought tolerance, the species’ distribution ranges were mapped and combined with global climate data. The simulated climate change had a general negative effect on plant survival and plant growth, irrespective of the macroclimatic niche characteristics of the species. Against expectation, species with ranges extending into drier regions did not generally perform better under drier conditions. Growth performance and survival was best in mown pastures, representing a quite intensive type of land use in all study regions. Species with higher macroclimatic drought tolerance were generally characterized by lower growth rates and higher survival rates in land‐use types with regular mowing regimes, probably because of reduced competition in the growing season. In conclusion, plant species with similar climatic niche characteristics cannot be expected to respond consistently over different regions owing to complex interactions of climate change with land use practices.  相似文献   

13.
The interactions between climate and land‐use change are dictating the distribution of flora and fauna and reshuffling biotic community composition around the world. Tropical mountains are particularly sensitive because they often have a high human population density, a long history of agriculture, range‐restricted species, and high‐beta diversity due to a steep elevation gradient. Here we evaluated the change in distribution of woody vegetation in the tropical Andes of South America for the period 2001–2014. For the analyses we created annual land‐cover/land‐use maps using MODIS satellite data at 250 m pixel resolution, calculated the cover of woody vegetation (trees and shrubs) in 9,274 hexagons of 115.47 km2, and then determined if there was a statistically significant (p < 0.05) 14 year linear trend (positive—forest gain, negative—forest loss) within each hexagon. Of the 1,308 hexagons with significant trends, 36.6% (n = 479) lost forests and 63.4% (n = 829) gained forests. We estimated an overall net gain of ~500,000 ha in woody vegetation. Forest loss dominated the 1,000–1,499 m elevation zone and forest gain dominated above 1,500 m. The most important transitions were forest loss at lower elevations for pastures and croplands, forest gain in abandoned pastures and cropland in mid‐elevation areas, and shrub encroachment into highland grasslands. Expert validation confirmed the observed trends, but some areas of apparent forest gain were associated with new shade coffee, pine, or eucalypt plantations. In addition, after controlling for elevation and country, forest gain was associated with a decline in the rural population. Although we document an overall gain in forest cover, the recent reversal of forest gains in Colombia demonstrates that these coupled natural‐human systems are highly dynamic and there is an urgent need of a regional real‐time land‐use, biodiversity, and ecosystem services monitoring network.  相似文献   

14.
Two grassland management patterns, multi-household and single-household, have developed in the Qinghai-Tibetan Plateau of China since grasslands came under household control. In the multi-household management pattern (MMP), grassland is jointly managed by two or more households without fences between individual household pastures. The single-household management pattern (SMP) refers to a system in which grassland is separately managed by an individual household with fences separating these pastures from those of other households. This paper compares the benefits of the two management patterns using a field investigation and a social survey. We found that the MMP has greater economic benefits compared with the SMP because multi-household cooperation was more likely to reduce production costs and so reduce resource expenditures. Furthermore, the social benefits from MMP collaboration were also important. The results also indicated that the SMP was more likely to cause grassland degradation. In conclusion, the comprehensive benefits created under the MMP were greater as a result of social learning in this coupled human and natural ecosystem. The MMP has important policy implications for conservation and development initiatives in the Qinghai-Tibetan Plateau and other similar areas.  相似文献   

15.
Intensification of rangeland management has coincided with population declines among obligate grassland species in the largest remaining tallgrass prairie in North America, although causes of declines remain unknown. We modeled population dynamics and conducted sensitivity analyses from demographic data collected for an obligate grassland bird that is an indicator species for tallgrass prairie, the greater prairie-chicken (Tympanuchus cupido), during a 4-year study in east-central Kansas, USA. We examined components of reproductive effort and success, juvenile survival, and annual adult female survival for 3 populations of prairie-chickens across an ecological gradient of human landscape alteration and land use. We observed regional differences in reproductive performance, survivorship, and population dynamics. All 3 populations of prairie-chickens were projected to decline steeply given observed vital rates, but rates of decline differed across a gradient of landscape alteration, with the greatest declines in fragmented landscapes. Elasticity values, variance-scaled sensitivities, and contribution values from a random-effects life-table response experiment all showed that the finite rate of population change was more sensitive to changes in adult survival than other demographic parameters in our declining populations. The rate of population change was also sensitive to nest survival at the most fragmented and least intensively grazed study site; suggesting that patterns of landscape fragmentation and land use may be affecting the relative influences of underlying vital rates on rates of population growth. Our model results indicate that 1) populations of prairie-chickens in eastern Kansas are unlikely to be viable without gains from immigration, 2) rates of population decline vary among areas under different land management practices, 3) human land-use patterns may affect the relative influences of vital rates on population trajectories, and 4) anthropogenic effects on population demography may influence the regional life-history strategies of a short-lived game bird. © 2012 The Wildlife Society.  相似文献   

16.
Despite a growing body of research about rangeland degradation and the effects of policies implemented to address it on the Tibetan Plateau, little in-depth research has been conducted on how pastoralists make decisions. Based on qualitative research in Gouli Township, Qinghai province, China, we analyze the context in which Tibetan herders make decisions, and their decisions about livestock and pastures. We refute three fundamental assumptions upon which current policy is premised: that pastoralists aim to increase livestock numbers without limit; that, blindly following tradition, they do not actively manage livestock and rangelands; and that they lack environmental knowledge. We demonstrate that pastoralists carefully assess limits to livestock holdings based on land and labor availability; that they increasingly manage their livestock and rangelands through contracting; and that herding knowledge is a form of embodied practical skill. We further discuss points of convergence and contradiction between herders’ observations and results of a vegetation analysis.  相似文献   

17.
 在样线调查基础上, 用半方差函数、分形维数、空间自相关等方法对青藏高原“黑土滩”次生毒杂草群落地上成体植株、幼苗空间的异质性, 二者物种构成的相似性及其尺度特征进行分析。结果表明, “黑土滩”次生毒杂草群落在较大尺度上地上成体植株物种数的空间依赖性强, 异质性高, 而个体密度则较均匀; 幼苗物种数在小尺度上空间异质性高, 幼苗密度在大尺度上空间异质性较高, 幼苗密度独立于其物种分布, 高密度的幼苗分布在微地形下和群落间隙中, “黑土滩”毒杂草植物幼苗充分利用空余生态位进行群落补充; “黑土滩”群落在不同尺度上地上成体植株与幼苗物种构成相似性变化的规律性不大; “黑土滩”群落幼苗靠其高密度特征完成群落更新, 植物群落幼苗更新力强, 导致“黑土滩”毒杂草群落趋于稳定。因此, 建议加强干扰以减弱“黑土滩”次生毒杂草群落稳定趋势, 这对恢复“黑土滩”具有重要指导意义。  相似文献   

18.
Soil nitrogen (N) mineralization is an important component of the N cycling process in ecosystems. In this study, we assessed the seasonal patterns of net soil N mineralization and nitrification using an intact soil core incubation method in the upper 0–10 cm soil layer in three representative land use types. These included a fenced steppe, an abandoned field and a crop field in a grassland landscape of Inner Mongolia, China. The study was conducted from September 2004 to August 2005. Our results demonstrate marked seasonal variations in inorganic N pools, net nitrogen mineralization and net nitrification. Net N mineralization was higher in the crop field than in the fenced steppe and the abandoned field. Daily rates of N mineralization and nitrification during the growing season were approximately twice their corresponding mean annual rates. Accumulative mineralization and nitrification of N during the growing season accounted for about 90 and 85% of that measured for the entire year. Rates of mineralization and nitrification were positively correlated with soil bulk density, but negatively correlated with soil pH. Net N mineralization and nitrification were strongly regulated by land use, precipitation, soil water and temperature.  相似文献   

19.
Dry savannahs are highly sensitive to climate change and under intense anthropogenic pressure. Therefore, the methods for assessing their status should be easy and repeatable. Monitoring through satellite data and field measurements are limited in accurately assessing the spatiotemporal dynamics of ecosystems. Fortunately, emerging technologies like Unmanned Aerial Systems (UAS) allow to transcend these limitations. But their calibration with field data for application in rangelands is still relatively new and less common than for example in precision agriculture. In this study we developed a drone-based workflow for mapping the condition of rangelands in dryland savannah. We evaluated how accurately and efficiently the two common indicators (i.e., potential forage biomass and rangeland cover type) of rangeland condition can be estimated from drone imagery across a range of conditions (i.e., highly degraded to healthy rangelands). To develop the drone-based potential forage biomass model we tested the accuracy of four vegetation indices to predict field biomass, with the optimized soil adjusted vegetation index (OSAVI) showing the highest prediction accuracy (R2 = 0.89 and RMSE = 194.05). The OSAVI-based model yielded a significant strong relationship (R2 = 0.80, p < 0.001) between predicted and field observed potential forage biomass across the rangeland system. For land cover, we applied a decision tree classification based on thresholds determined using data mining, with a mean overall accuracy of 95.8%. The drone-based estimates of bare cover, herbaceous cover and woody cover showed strong agreements (R2 ranging between 0.86 and 0.97) with the two image-truthing methods (line-point intercept and visual estimations) tested. We show that the drone-based approach is more efficient, unbiased, and repeatable than the field methods. Based on these results, the drone-based workflow presented here offers a reproducible, accurate and efficient approach for near-real time monitoring of rangeland condition at a landscape level. This may assist with climate-adapted management to prevent further land degradation and associated threats to biodiversity and human livelihoods.  相似文献   

20.
牧民对草地可持续利用认知水平很大程度上影响了当地土地的利用状况,进而影响牧民保护草地行为的产生。基于黄河源区(玛多、玛沁、班玛、达日、甘德)的入户调查数据,在分析牧民生计方式和草地退化认知特征的基础上,运用Tobit模型探究影响牧民对草地退化生态认知的主要因素。研究结果表明:(1)黄河源区88%的牧民认为近5年草地出现了不同程度的退化,与学术界普遍认同的观点相一致;(2)联户放牧、子女受教育程度、新技术培训、牲畜养殖规模等对牧民关于草地退化的认知有正向引导作用;(3)户年均收入、国家草原奖补对牧民关于草地退化的认知有负向作用。为有效解决黄河源区牧民对草地的严重依赖性和源区内产业结构单一的问题,应(1)加强牧民专业技能培训、提升草原牧民整体文化水平;(2)鼓励中小牧民参与联户经营;(3)优化牧户生计方式,改善生计策略,减小牧民对草地的依赖程度,实现社会-生态系统的可持续发展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号