首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Distribution and plant mass of aquatic macrophytes, and their relation to environmental conditions was studied in the submontane-colline Slatina river in 2004. Diversity of macrophytes was low, only 8 vascular plants, 3 mosses and group Algae filamentosae were found. Myriophyllum spicatum is dominant species, Fontinalis antipyretica, Rhynchostegium riparioides and Algae filamentosae are frequent. Interactions between flow class, bed material, depth of water and the first three mentioned macrophytes, as well as Jungermannia leiantha were detected. Sparganium erectum prefers more antrophogenic conditions and Myriophyllum spicatum prefers the light. According to cluster analysis, three distinct and ecologically well separated parts of the river were identified. Based on Reference index, poor ecological status for the studied part of the Slatina river was estimated.  相似文献   

2.
Aquatic macrophytes play a central role in preserving the ecological equilibrium of shallow lakes and in the restoration of eutrophic lakes that have switched to phytoplankton-dominated turbid water. Massaciuccoli Lake, a shallow lake located along the Tuscan coast in Italy, has shown a constant and progressive simplification of the submerged plant community, for anthropogenic reasons, leading, in recent years, to turbid water. The growth and nutrient absorption capability of two macrophyte species, Myriophyllum verticillatum L. and Elodea canadensis Michaux, in the lake was investigated, with the prospect of a future lake restoration programme centred on their replacement. Mesocosm experiments were conducted to monitor the plant growth and nutrient (NO2, NO3, NH4+, Ntot, PO43−, Ptot) content in the plant dry matter and water at the beginning and at the end of the trial. Bacterial activity was analysed in the water in order to verify the possible nutrient absorption contribution by organisms other than plants. Both M. verticillatum and E. canadensis showed satisfactory growth and nutrient reduction in the water body. Moreover, their different growth patterns suggested that optimal replacement can be performed with their introduction in two steps, starting with M. verticillatum, which shows the best capacity to colonise the aquatic environment, due to its tendency towards lengthening.  相似文献   

3.
Abstract. The species composition of stands of submerged macrophytes was studied in relation to the main environmental factors in oligohaline wetlands of the Camargue, southern France. Correlations were sought between the environmental factors and the abundance of the different species using canonical analysis. 24 species of submerged macrophytes, including 10 species of Charophyta, were recorded in the 60 sites studied. The hydrological regime and the salinity appeared to be the main factors controlling the abundance of the different species. This is related to the management of the marshes in the Camargue, which is carried out using these two controlling factors, particularly the hydrological regime, and also includes the destruction of emergent vegetation, mechanically or by grazing. The bivariate ecological amplitude of the individual species was calculated from field data along the gradients of flooding duration and conductivity of the water. My-riophyllum spicatum, Potamogetón pectinatus and Ruppia cirrhosa dominate permanent marshes along the conductivity gradient. In temporary marshes, all having a low conductivity, Zannichellia pedunculata, Ranunculus baudotii, Chara áspera and Callitriche truncata dominate.  相似文献   

4.
环境因素对湖泊高等水生植物生长及分布的影响   总被引:1,自引:0,他引:1  
综述了水质、底质、周丛生物,浮游生物等对湖泊水生高等植物生长的影响,指出:水生高等植物的恢复是湖泊生态功能恢复的关键;水生高等植物恢复,应在营造其合适生境的基础上,以自然恢复为主,人工恢复应遵循自然规律,优化群落结构;草食性鱼类对湖泊水生高等植物负面影响较大,应注意控制.  相似文献   

5.
The shift from a turbid-water state to a clear macrophyte-dominatedstate in the shallow lake Veluwemeer (The Netherlands) has led to nuisance forrecreational navigation. The nuisance concerns the dense beds ofPotamogeton perfoliatus in particular, whereas thelow-canopy forming charophytes cause much less harm. On the other hand, theimportance of macrophyte cover for the stability of the clear-water state hasbeen recognised. To assess the potential of mechanical removal of densemacrophyte beds, several cutting regimes were simulated in a mixed vegetation ofP. perfoliatus and Chara aspera, usingthe individual-based model Charisma. These species occupy a wide range of waterdepths between 0.5 and 2.5 m, with C. asperadominating the shallower zone and P. perfoliatus dominatingthe deeper zone; intermediary is a zone where either species may dominate asalternative equilibria. Both the cutting height and timing affected the amountof biomass present in summer. The effect of cutting was more profound fortreatment later in the season. With a cutting level above theChara-canopy, the simulations showed an increased biomassof C. aspera and reduction of P.perfoliatus. In the zone of alternative equilibria, it was possibleto provoke a sustainable shift from P. perfoliatusdominance to C. aspera dominance. To achieve this, annualrepetition of cutting for a number of years was necessary. A harvesting regimeaimed at shifting the vegetation dominance from P.perfoliatus towards C. aspera could be an optionfor management of the lake, since it holds the perspective of decreasedmanagement effort after a number of years. Moreover, removing only high-canopyvegetation implies high conservation values and recreational use can becombined.  相似文献   

6.
Data on some relevant environmental variables and phytoplankton species composition, collected from the hypertrophic shallow lake Albufera of Valencia (Spain) during 1980–88, were examined using Redundancy Analysis (RDA). The hydrological cycle of the lake is manipulated for rice cultivation in the area. Seasonality and the particular hydrological cycle of the lake were the principal factors influencing long-term phytoplankton dynamics. Annual or horizontal differences were less important than the seasonal factor. However, a trend of phosphate increase and underwater illumination decrease was observed between 1980 and 1988. These changes might be related to some species year-to-year variations, although in general interannual phytoplankton changes were scarce. Spatial phytoplankton differences were much smaller than physical and chemical differences, which were mainly related to loading and residence times at the different sampling zones. Shallowness, hypertrophy and the regular hydrological cycle of the Albufera for rice yield, seem to contribute to the maintenance of an almost stable and homogeneous algal community, mainly composed of filamentous cyanophytes. RDA analysis has proved to be an efficient method in yielding valuable information on phytoplankton-environment interactions and trends over a long series of data. It seems also a feasible technique to monitor the results of lake management and restoration in the future.  相似文献   

7.
From 2005 to 2007, we established bird-proof enclosures in a small, shallow and semi-permanent lake, lacking fish, at Brown Moss, Shropshire, UK, to investigate the effects of aquatic birds on seasonal growth of submerged and emergent macrophytes. The highest density of birds on the lake was in winter (110 individuals ha−1) and the lowest in summer 2005 (6 ha−1). Plant growth varied with season but there were significantly different (F = 8.03, p < 0.05, df = 1) standing crops of macrophytes between bird-proof enclosures (proportion of volume occupied, 0.47 ± 0.04) and control treatments (0.36 ± 0.11). Different densities of birds occurred in different areas and this was reflected in their effects. Ducks, mainly mallard (Anas platyrhynchos, Linnaeus), and teal (Anas crecca, Linnaeus), damaged plants by direct consumption, uprooting and trampling, whereas larger birds, such as mute swan (Cygnus olor, Gmelin), were able to remove Typha latifolia (Linnaeus). In summer, grazing pressure was reduced as the population of birds declined. Waterfowl caused seasonal impacts on the re-development of the water plant community. However, waterfowl herbivory had low potential to shift a macrophyte-dominated state into a phytoplankton-dominated state because aquatic plants could recover, during the growing season, when bird populations declined.  相似文献   

8.
A typical marl lake of the Upper Great Lakes region has very few quantitatively important aquatic macrophytes. The macrophytes, however, dominate the total primary production of the lake. Submersed vegetation is extremely sparse on the shallow (less than I m) marl bench that characterizes the littoral of these lakes, and is completely dominated by one. little-known species (Scirpus subterminalis Torr.) between 1 and 7 m. A detailed investigation of the spatial and seasonal distribution of macrophytic species and biomass showed that S. subterminalis strongly dominated the lake (79% of total biomass). S. suhterminalis represented an almost pure stand (to 200 g m?2 mean annual ash-free dry weight) at all times of the year at intermediate depths of macrophytic growth (1–6 m). Two species of Chara (of eight varieties and forms) were present in significant quantities (12% of total biomass; to 100 g m?2) but were severely limited to shallow depths (0-S-l m) and protected areas. Several annual submersed angiosperms were present (9% of total biomass), but only two species were quantitatively important. Potamogeton illinoensis Morong. and P. praelongus Wulfen formed brief summer peaks (less than 100 g m?2) at 3 and 4–6 m, respectively. A striking feature of the seasonal biomass distribution of Scirpus subterminalis was the higher, viable biomass (to 150g m?2) throughout the winter under ice cover. Cyclic fluctuations of the S. subterminalis populations were discerned at different depths, each with different periodicities. The population at 2 m exhibited a fall peak; that at 4 m had a summer maximum. The lowest overall biomass of S. subterminalis occurred in the 2 m population in June. Chara populations at 0–2 m also exhibited a relatively constant biomass throughout the year. The appearance of Nitella at 7 m in July-October and of Chara at 5 m in September-October was interpreted as an interaction between light, thermal, and carbon stratification. Estimates of macrophytic productivity of perennial (‘evergreen’) species populations whose biomass remains relatively constant throughout the year were made employing several different methods of calculation and turnover factors. All methods resulted in productivity estimates in good agreement with the conservative value of 178 g m?2 year?1 for the entire lake. In comparison to the other components (phyto-planktonic, epiphytic and epipelic algae) of the primary production of Lawrence Lake, the aquatic macrophytes constituted a major portion (anuual mean 82·77 g C m?2 year?1 or 48·3 %) of the total production of the lake. The low diversity but relatively high quantitative importance of macrophytes in marl lakes is attributed to an adverse dissolved inorganic and organic chemical milieu which inhibits phytoplanktonic production and allows only certain adapted macrophytes to develop strongly. The phenomenon of perennial biomass levels throughout the year is believed to be much more common than previously suspected and has iikely resulted from adaptations of submersed macrophytes to ameliorated conditions of water and temperatures relative to the terrestrial situation in winter.  相似文献   

9.
Uncovering what predicts genetic diversity (GD) within species can help us access the status of populations and their evolutionary potential. Traits related to effective population size show a proportional association to GD, but evidence supports life-history strategies and habitat as the drivers of GD variation. Instead of investigating highly divergent taxa, focusing on one group could help to elucidate the factors influencing the GD. Additionally, most empirical data is based on vertebrate taxa; therefore, we might be missing novel patterns of GD found in neglected invertebrate groups. Here, we investigated the predictors of the GD in crabs (Brachyura) by compiling the most comprehensive cytochrome c oxidase subunit I (COI) available. Eight predictor variables were analysed across 150 species (16 992 sequences) using linear models (multiple linear regression) and comparative methods (PGLS). Our results indicate that population size fluctuation represents the most critical trait predicting GD, with species that have undergone bottlenecks followed by population expansion showing lower GD. Egg size, pelagic larval duration and habitat might play a role probably because of their association with how species respond to disturbances. Ultimately, K-strategists that have undergone bottlenecks are the species showing lower GD. Some variables do not show an association with GD as expected, most likely due to the taxon-specific role of some predictors, which should be considered in further investigations and generalizations. This work highlights the complexity underlying the predictors of GD and adds results from a marine invertebrate group to the current understanding of this topic.  相似文献   

10.
Hargeby  A.  Andersson  G.  Blindow  I.  Johansson  S. 《Hydrobiologia》1994,(1):83-90
In Lake Krankesjön, southern Sweden, sago pondweed (Potamogeton pectinatus L.) and a stonewort (Chara tomentosa L.) expanded spatially during the second half of the 1980's after more than a decade of phytoplankton blooms and sparse submerged vegetation. During the expansion of submerged plants the number of resting and breeding waterfowl increased. The increase was significant for herbivorous birds such as coot (Fulica atra L.) and mute swan (Cygnus olor (Gmelin)), but also for omnivorous dabbling ducks. The shift from phytoplankton to submerged macrophytes caused structural changes on higher trophic levels, and an altered trophic web developed. The density of planktonic Cladocera decreased, which is suggested to be a result of decreased phytoplankton productivity and biomass as nutrient levels dropped. The benthic macroinvertebrate assemblage changed from low diversity and biomass dominated by Chironomidae and Oligochaeta on bare sediment, to high diversity and biomass characterized by plant-associated forms like snails and isopods in areas covered by macrovegetation. The mean size of perch (Perca fluviatilis L.) increased, probably as a result of higher availability of macroinvertebrates in the vegetation. The perch reached a mean size where the species is known to shift to a fish diet, permitting an increased top down effect on the ecosystem. The results support the idea that shallow eutrophic lakes can shift between two states, each one stabilized by feed-back mechanisms including both biotic and abiotic factors. Shifts between these states are suggested to be a possible explanation for observed drastic changes in abundance of waterfowl in shallow eutrophic lakes.  相似文献   

11.
Roberts  Ellen  Kroker  Jens  Körner  Sabine  Nicklisch  Andreas 《Hydrobiologia》2003,506(1-3):525-530
Hydrobiologia - The development of periphyton on artificial substrate exposed for 1, 2 or 2–20 weeks was followed during two subsequent vegetation periods (2000 and 2001) in shallow Lake...  相似文献   

12.
13.
SUMMARY 1. Historical and recent data on the occurrence of macrophytes in twenty-eight lentic soft waters in The Netherlands are summarized. These waters were, and a few still are, characterized by a submerged vegetation of isoetid plants. Changes in the species composition of macrophytes are visualized by means of multivariate analysis and by shifts in species-spectra.
2. Ordination of the available data shows that the pH, alkalinity, acidity, contents of heavy metals, dissolved organic matter and some important salts and nutrients in water and interstitial water are strongly related to the recent distribution of aquatic plants in waters, which were originally of low alkalinity. In addition, the available inorganic carbon and the redox potential in the sediment are also important environmental parameters in explaining differences in aquatic vegetation.
3. The recorded changes in the macrophyte species composition can be attributed to the effects of acidification and eutrophication. The most important, overall change is a reduction of the number of species.
4. Hydrology proves to be important in controlling the sensitivity of a body of water for acidifying deposition.  相似文献   

14.
We investigated aquatic macrophytes, water quality, and phytoplankton biomass and species composition in three shallow lakes with different levels of vegetation cover and nutrient concentration in Kushiro Moor, during August 2000. Trapa japonica can live in a wide range of nutrient levels. This species forms an environment with a steeper extinction of light, higher concentrations of dissolved organic carbon (DOC), lower concentrations of dissolved oxygen (DO) near the bottom, and lower concentrations of nitrate+nitrite and soluble reactive phosphorus (SRP) than other vegetation types. The pH was much higher in a Polygonum amphibium community, and the DO near the bottom did not decrease compared to a T.japonica community in the summer. The relationship between chlorophyll a and the limiting nutrient (total phosphorus (TP) when total nitrogen (TN):TPis 10 and TN/10 when TN:TP is <10) significantly differed between lakes with and without submerged vegetation. The chlorophyll a concentrations at a given nutrient level were significantly lower in water with submerged macrophytes than in water without them. Correspondence analysis showed that the difference in phytoplankton community structure across sites was largely due to the presence or absence of submerged macrophytes, and the ordination of phytoplankton species in the lakes with submerged macrophytes is best explained by environmental gradients of TN, chlorophyll, pH and SRP.  相似文献   

15.
The aims of this study were to explore the environmental factors that determine the distribution of plant communities in temporary rock pools and provide a quantitative analysis of vegetation–environment relationships for five study sites on the island of Gavdos, southwest of Crete, Greece. Data from 99 rock pools were collected and analysed using Two-Way Indicator Species Analysis (TWINSPAN), Detrended Correspondence Analysis (DCA) and Canonical Correspondence Analysis (CCA) to identify the principal communities and environmental gradients that are linked to community distribution. A total of 46 species belonging to 21 families were recorded within the study area. The dominant families were Labiatae, Gramineae and Compositae while therophytes and chamaephytes were the most frequent life forms. The samples were classified into six community types using TWINSPAN, which were also corroborated by CCA analysis. The principal gradients for vegetation distribution, identified by CCA, were associated with water storage and water retention ability, as expressed by pool perimeter and water depth. Generalised Additive Models (GAMs) were employed to identify responses of four dominant rock pool species to water depth. The resulting species response curves showed niche differentiation in the cases of Callitriche pulchra and Tillaea vaillantii and revealed competition between Zannichellia pedunculata and Chara vulgaris. The use of classification in combination with ordination techniques resulted in a good discrimination between plant communities. Generalised Additive Models are a powerful tool in investigating species response curves to environmental gradients. The methodology adopted can be employed for improving baseline information on plant community ecology and distribution in Mediterranean ephemeral pools. Handling editor: S. M. Thomaz  相似文献   

16.
The study presented is an attempt to explain variance in charophyte presence for the territory of Serbia by using several environmental parameters and to find a connection between certain species of charophytes and aquatic macrophytes found growing with them. Environmental parameters used were habitat type, water depth, altitude and four bioclimatic parameters extracted from the WorldClim set of global climate layers. The data used are an outcome of gathering all available literature and herbarium data on charophytes in Serbia ending with the first decade of twenty-first century, and were not systematically collected for the purpose of this study. Of 22 analyzed charophytes, 8 of them are in endangered and 4 in vulnerable IUCN threat categories for the Balkan region. The analyses performed were indicator species analysis (ISA), canonical correspondence analysis (CCA) and partial canonical correspondence analysis (pCCA). ISA distinguished four species of Charophyta as indicators of specific habitat types. Percentages of variance explained were 18.98% and 19.91% for CCA and pCCA, respectively. Depth and altitude were shown to be the most significant environmental factors explaining charophyte occurrence.  相似文献   

17.
The modelPCLAKE describes the phosphorus and nitrogen cycles within a shallow lake ecosystem, including the sediment and a simplified biological food web. All components are modelled in a generalized way rather than a very detailed one. This model has been applied to Lake Zwemlust, a small biomanipulated lake in The Netherlands. Formerly, this highly eutrophic lake was dominated by cyanobacteria and devoid of macrophytes. Biomanipulation was carried out in 1987 by pumping-out of the water, removal of all fish, and refilling of the lake with seepage water. The lake was restocked with some rudd, pike, zooplankton and seedlings of macrophytes, and then monitored up to 1992. Macrophytes developed rather quickly and reached their maximum biomass during the six-years period in 1989. Despite the continuously high nutrient (N and P) loading, algal biomass remained low due to nitrogen limitation, caused by competition with the macrophytes. From 1990 onwards, the macrophytes declined again and a species shift occurred, following an increase of herbivorous birds on the lake and the development of herbivorous fishes.Model simulations grossly reproduced the observed developments in Lake Zwemlust before and after the biomanipulation measures. The existence of multiple steady states at the same trophic state and the possible shift between them could be simulated well. This study also demonstrates the interrelation between system structure and the distribution and cycling of nutrients. It is concluded, that within general boundary conditions set by the trophic state of the system, the food web structure determines the actual nutrient flows and the occurrence of nutrient limitations of the primary producers. It is shown that both aspects can be integrated in one mathematical model. The long-term stability of the macrophyte dominance in the lake is discussed.  相似文献   

18.
1. We performed two field experiments using different cage sizes to determine the direct and indirect effects of carp on macrophytes and invertebrate community composition in a shallow lake. 2. The presence of carp produced a significant decrease in macrophyte abundance, changes in species composition and decreased abundance and diversity of invertebrates in small (2.5 × 2.5 × 2.0 m) cages. In large exclosures (15 × 5 m), only macrophyte stem length was significantly affected by carp. 3. There was considerable variation in the macrophyte and invertebrate responses to carp on different sides of the lake in the large exclosures, suggesting that wind and wave action are also important variables affecting macrophyte growth and persistence. 4. The data suggest that carp can significantly affect species abundance and diversity of macrophytes and some macroinvertebrates.  相似文献   

19.
Nurminen  Leena  Horppila  Jukka  Lappalainen  Jyrki  Malinen  Tommi 《Hydrobiologia》2003,506(1-3):511-518

The role of rudd (Scardinius erythrophthalmus) herbivory was studied in Kirkkojärvi, a shallow and turbid basin in Lake Hiidenvesi, Finland. The submerged species dominating in the rudd diets were Potamogeton obtusifolius, Ranunculus circinatus, Sparganium emersum, bryophytes, and filamentous algae. Plant consumption estimated with bioenergetics modelling increased with fish age, being highest in late summer concomitant with the macrophyte biomass peak. Depending on the age structure, a rudd biomass of 20 kg ha?1 consumes 18–23 kg of macrophytes ha?1 a?1, while a rudd biomass of 100 kg ha?1 results in plant consumption of 92–115 kg ha?1 a?1. Although, rudd seemed to feed rather unselectively on suitable-sized and edible plants, some species abundant in the littoral, such as Myriophyllum verticillatum and pleustophytic Ceratophyllum demersum, were not found in rudd guts, indicating selective plant consumption. In Kirkkojärvi, selective grazing by rudd and increased turbidity and high nutrient levels partly caused by bottom dwelling cyprinid fish, may promote the inedible and pleustophytic macrophytes, which have increased in Kirkkojärvi during the past decades.

  相似文献   

20.
Van den Berg  Marcel S.  Joosse  Willemien  Coops  Hugo 《Hydrobiologia》2003,506(1-3):611-623
Hydrobiologia - Logistic regression was used to analyse the relationship between six submerged macrophyte taxa (Chara spp., Potamogeton perfoliatus, Potamogeton pectinatus, Potamogeton pusillus,...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号