首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Postinfection development of Meloidogyne chitwoodi from second-stage juveniles (J2) to mature females and egg deposition on ''Nugaines'' winter wheat required 105, 51, 36, and 21 days at 10, 15, 20, and 25 C. At 25 C, the J2 induced cavities and hyperplasia in the cortex and apical meristem of root tips with hypertrophy of cortical and apical meristem cell nuclei, 2 and 5 days after inoculation. Giant cells induced by late J2 were observed in the stele 10 days after inoculation. Clusters of egg-laying females were common on wheat root galls 25 days after inoculation. Juveniles penetrated wheat roots at 4 C and above, but not at 2 C, when inoculum was obtained from cultures grown at 20 C, but no penetration occurred at 4 C when inoculum was stored for 12 hours at 4 C before inoculation. In northern Utah, J2 penetrated Nugaines wheat roots in the field in mid-May, about 5 months after seedling emergence. M. chitwoodi eggs were first observed on wheat roots in mid-July when plants were in blossom. Only 40% of overwintered M. chitwoodi eggs hatched at 25 C.  相似文献   

2.
Tomato (Lycopersicon esculentum Mill.) seedlings, susceptible (cv. Pearson A-I Improved) and resistant (cv. Pearson Improved) to race 1 Fusarium oxysporum f. sp. lycopersici (Sacc.) Snyd &Hans., were inoculated with Meloidogyne javanica (Trueb) Chitwood second-stage juveniles and 3 weeks later with race 1 F. oxysporum f. sp. lycopersici spores. One week after fungal inoculation, no fungus was visible in root tissue of the tomato cultivars and the giant cells were normal. Two weeks after fungal inoculation, abundant hyphae were visible in xylem tissues of Fusarium-susceptible but not of Fusarium-resistant plants. In susceptible plants, giant cell degeneration occurred, characterized by membrane and organelle disruption. In addition, where hyphae were in direct contact with the giant cell, dissolution of the giant cell wall occurred. Three weeks after fungal inoculation, fungal hyphae and spores were visible inside xylem tissues and giant cells in Fusarium-susceptible plants and in xylem tissue of the resistant plants. In susceptible and resistant plants, giant cell degeneration was apparent. Giant cell walls were completely broken down in Fusarium-susceptible tomato plants. In both cultivars infected by Fusarium, giant cell nuclei became spherical and dark inclusions occurred within the chromatin material which condensed adjacent to the fragmented nuclear membrane. No such ultrastructural changes were seen in the giant cells of control plants inoculated with nematode alone. Giant cell deterioration in both cultivars is probably caused by toxic fungal metabolites.  相似文献   

3.
The total numbers of nuclei in giant cells induced by Meloidogyne incognita in pea, lettuce, tomato, and broad bean were determined. Mature giant cells from pea had the most nuclei per giant cell with a mean of 59 ± 23, lettuce had the fewest with 26 ± 16, and tomato and broad bean were intermediate. The rate of increase in numbers of nuclei for all plant species was greatest during the first 7 days after inoculation. No mitotic activity was observed in giant cells associated with adult nematodes. Number of nuclei per giant cell doubled each day during the period of greatest mitotic activity, but number of total chromosomes per giant cell increased 20-fold per day at the same time. The hypothesis is presented that factor(s) responsible for the polyploid, mulfinucleate condition characteristic of giant cells may be different from factor(s) responsible for aneuploid numbers of chromosome per nucleus or for nuclear aberrations such as the presence of linked nuclei.  相似文献   

4.
White yam tissues naturally and artificially infected with root-knot nematodes were fixed, sectioned, and examined with a microscope. Infective second-stage juveniles of Meloidogyne incognita penetrated and moved intercellularly within the tuber. Feeding sites were always in the ground tissue layer where the vascular tissues are distributed in the tubers. Giant cells were always associated with xylem tissue. They were thin walled with dense cytoplasm and multinucleated. The nuclei of the giant cells were only half the size of those found in roots of infected tomato plants. Normal nematode growth and development followed giant cell formation. Females deposited eggs into a gelatinous egg mass within the tuber, and a necrotic ring formed around the female after eggs had been produced. Second-stage juveniles hatched, migrated, and re-infected other areas of the tuber. No males were observed from the tuber.  相似文献   

5.
Bitter gourd (Momordica charantia L.) was inoculated with root-knot nematode Meloidogyne incognita to investigate the anatomical abnormalities in the affected roots. Soon after inoculation the second-stage juveniles (J2) entered at or near the root caps and migrated intercellularly towards the zone of vascular differentiation. Discrete giant cells were observed after three days of inoculation. The nematode induced hypertrophy and hyperplasia near the giant cells. After six days, the juveniles moulted to their third stage (J3). At the same, time giant cell size and density of giant cell cytoplasm increased. The continuity of vascular strands remained unaffected. Between 12 and 24 days of inoculation the giant cells enlarged several times and became multinucleate and enclosed dense and granular cytoplasm. The nematodes became almost pyriform 18 days after inoculation. The orientation of vascular strands changed, due to hypertrophy, hyperplasia and enlargement of the nematode. After 30 days of inoculation the nematodes developed into mature females and started egg laying. A large amount of parenchyma transformed into abnormal xylem.  相似文献   

6.
Histological observations of okra Abelomoschus esculentus ''Clemson Spineless'' and ridgeseed spurge Euphorbia glyptosperma (a common weed) infected with Meloidodera charis Hopper, indicated that the juvenile nematode penetrated the roots intercellularly. Within 5 days after plant emergence the nematode positioned its body in the cortical tissue parallel to the vascular system. By 10 days after plant emergence the juvenile had extended its head into the vascular system and initiated giant cell formation, generally in protophloem tissue. Giant cells were one celled and usually multi-nucleate. Eggs were observed in the female body 30 days after plants emerged and juveniles were found within the female body by 40 days. Nematode development progressed equally in the root system of either host plant. Generally, throughout the nematode''s life cycle its entire body remained inside the cortical tissue of okra. In ridgeseed spurge, however, the posterior portion of the female erupted through the host epidermis as early as 15 days after plant emergence; only the head and neck remained embedded in the host. The nematode caused extensive tissue disruption in the cortical and vascular system of both plant species. Corn, Zea mays, was another host of the nematode.  相似文献   

7.
Cotton (Gossypium hirsutum) seedlings, uniformly infected with Meloidogyne incognita, were exposed for periods of 1-15 days to a nutrient solution containing tritium-labelled thymidine. Syncytium formation began with the amalgamation of cells near the nematode head, and was followed by synchronized mitoses of the nuclei which had been incorporated into a single cell. Syncytial nuclei synthesized DNA in roots harvested 3, 6, 9, 12, and 15 days after inoculation. Seedlings transferred from unlabelled to labelled nutrient solution 9 days after inoculation, and grown for 6 more days, contained some syncytial nuclei which did not become labelled. Giant-cell nuclei increased in size and, in many cases, all nuclei in one giant cell of a set showed active DNA synthesis at about the time the nematode molted to the adult stage.  相似文献   

8.
9.
The expression of a g-us reporter gene linked to a Parasponia andersonii hemoglobin promoter has been studied in transgenic tobacco plants after infection by Meloidogyne javanica. Transgenic roots were harvested at different times after nematode inoculation, and stained histochemically for expression of the gus gene. During the early stages of infection (0-2 weeks) there was little expression in giant cells, in contrast to other cells of the root. In later stages of infection (3-6 weeks) there was strong gus expression in giant cells, with virtually no expression in other cells of the root. The Parasponia hemoglobin promoter therefore appears to direct down-regulation of linked genes on induction of giant cells, but up-regulation in mature giant cells. This reflects different metabolic activities in the giant cells depending on their stage of development. The Parasponia hemoglobin promoter may respond to oxygen tension in giant cells. This suggests that oxygen tension may be limited in the metabolically active giant cells that are associated with egg-laying females.  相似文献   

10.
Root invasion, root galling, and fecundity of Meloidogyne javanica, M. arenaria, and M. incognita on tobacco was compared in greenhouse and controlled environment experiments. Significantly more M. javanica than M. arenaria or M. incognita larvae were found in tobacco roots at 2, 4, and 6 d after inoculation. Eight days after inoculation there were significantly more M. arenaria and M. javanica than M. incognita larvae. Ten days after inoculation no significant differences were found among the three Meloidogyne species inside the roots. Galls induced by a single larva or several larvae of M. javanica were significantly larger than galls induced by M. incognita: M. arenaria galls were intermediate in size. Only slight differences in numbers of egg masses or numbers of eggs produced by the three Meloidogyne species were observed up to 35 d after inoculation.  相似文献   

11.
The numbers of Meloidogyne incognita larvae which migrated from cotton roots declined over a 16-day period, but the difference in numbers migrating from resistant and susceptible cultivars was not significant. Larvae penetrated susceptible roots, matured, and reproduced within 14 days following inoculation, whereas nematode development in the resistant roots was greatly retarded. Three types of histological responses were observed in infected, resistant roots, and these correlated with the degree of nematode development. Some galls were examined which contained only fragments of nematodes; others contained no detectable traces of developing larvae. Formation of druses in galls, but not in healthy tissue, was noted in both cultivars 20 days after inoculation. Massive invasion of roots resulted in deep longitudinal fissures of root cortex.  相似文献   

12.
Treatment of second-stage juveniles (J2) of Meloidogyne incognita race 1 and M. javanica with soybean agglutinin, Concanavalin A, wheat germ agglutinin, Lotus tetragonolobus agglutinin, or Limax flavus agglutinin or the corresponding competitive sugars for each of these lectins did not alter normal root tissue response of soybean cultivars Centennial and Pickett 71 to infection by M. incognita race 1 or M. javanica. Giant cells were frequently induced in Centennial and Pickett 71 roots 5 and 20 days after inoculation of roots with untreated J2 of a population of M. incognita race 3. Treatment of J2 of M. incognita race 3 with the lectins or carbohydrates listed above caused Centennial, but not Pickett 71, root tissue to respond in a hypersensitive manner to infection by M. incognita race 3. Penetration of soybean roots by J2 of Meloidogyne spp. was strongly inhibited in the presence of 0.1 M sialic acid. Treatment of J2 with sialic acid was not lethal to nematodes, and the inhibitory activity of sialic acid was apparently not caused by low pH. These results suggest that carbohydrates may influence plant-nematode interactions.  相似文献   

13.
Temperature was an important factor in growth, development and reproduction of Meloidogyne hapla in lettuce. Growth, as measured by increase in diameter of females, was not appreciably different at the intermediate (21.1 C night and 26.7 C day) and high (26.7 C night and 32.2 C day) temperature regimes, but was considerably less at the low temperature regime (15.5 C night and 21.1 C day) than at the two higher temperature regimes. Second-stage female larvae developed into adults 14 days after inoculation at the high, 18 days at the intermediate and 34 days at the low temperature regime. Eggs were observed 20 days after inoculation at the high, 26 days at the intermediate and 54 days at the low temperature regime. Number of eggs and larvae after 6 weeks was greater at the high than at the intermediate temperature regime and no eggs or larvae occurred at the low temperature regime during the observed 6 weeks.  相似文献   

14.
Pathogenesis of M. chitwoodi associated with potato (Solanum tuberosura cv. Russet Burbank) followed a pattern characteristic of root-knot nematodes. Giant ceils developed in the phloem tissues of roots, stolons, and tubers and appeared to arise by hypertrophy and karyokinesis rather than cellular fusion. Gall formation was a function of parasite density and developed by hypertrophy of cortical cells. Brownish lesions which are symptomatic of tuber infection resulted from lignification of cortical cell walls in contact with egg matrix.  相似文献   

15.
A new lepidopteran cell line, NTU-YB, was derived from pupal tissue of Eurema hecabe (Linnaeus) (Pieridae: Lepidoptera). The doubling time of YB cells in TNM-FH medium supplemented with 8% FBS at 28 °C was 26.87 h. The chromosome numbers of YB cells varied widely from 21 to 196 with a mean of 86. Compared to other insect cell lines, the YB cells produced distinct esterase, malate dehydrogenase, and lactate dehydrogenase isozyme patterns. Identity of the internal transcribed spacer region-I (ITS-I) of YB cells to E. hecabe larvae was 96% and to Eurema blanda larvae (tissue isolated from head) was 81%. The YB cells were permissive to Nosema sp. isolated from E. blanda and the infected YB cells showed obvious cytopathic effects after 3 weeks post inoculation. The highest level of spore production was at 4 weeks post inoculation when cells were infected with the Nosema isolate, and spore production was 1.34 ± 0.9 × 106 spore/ml. Ultrastructrual studies showed that YB cells can host in vitro propagation of the E. blanda Nosema isolate, and developing stages were observed in the host cell nuclei as observed in the natural host, E. blanda. The NTU-YB cell line is also susceptible to Nosema bombycis.  相似文献   

16.
Giant cells induced in roots of Impatiens balsamina by Meloidogyne javanica and Meloidogyne incognita have been examined by light and electron microscopy. The first sign of giant-cell formation was division of cells surrounding a larva. Cell plate alignment appeared to proceed normally, but cytokinesis was unsuccessful and binucleate cells formed subsequently. No wall breakdown was evident then or later. The number of nuclei appeared to increase by repeated mitosis without separation by cytokinesis. Although no holes in walls were observed, wall stubs were found, and mechanisms for their formation are suggested.  相似文献   

17.
Root-knot nematodes are plant parasitic worms that establish and maintain an intimate relationship with their host plants. RKN induce the redifferentiation of root cells into multinucleate and hypertrophied giant cells essential for nematode growth and reproduction. Major rearrangements of the cytoskeleton occur during giant cell formation. We characterized the first plant candidate genes implicated in giant cell actin and microtubule cytoskeleton reorganization. We showed previously that formins may regulate giant cell isotropic growth by controlling the assembly of actin cables. Recently we demonstrated that a Microtubule-Associated Protein, MAP65-3, is essential for giant cell development. In the absence of functional MAP65-3, giant cells started to develop but failed to fully differentiate and were eventually destroyed. In developing giant cells, MAP65-3 was associated with a novel kind of cell plate—the giant cell mini cell plate—that separates daughter nuclei. Despite karyokinesis occurs without cell division in giant cell, we demonstrated that cytokinesis is initiated and required for successful pathogen growth and development.Key words: cytoskeleton, microfilament, formin, microtubule, microtubule-associated protein, giant cells, nematodeRoot-knot nematodes (RKN) Meloidogyne spp. is one of the most damaging plant pathogen worldwide.1 Their potential host range encompasses more than 2,000 plant species. During a compatible interaction, these obligate biotrophic pathogen have evolved an ability to manipulate host functions to their own benefit.26 At the onset of parasitism, the infective second stage juveniles (J2) penetrate the root tip and migrate intercellularly to reach the root vascular cylinder. Each J2 then induces the redifferentiation of five to seven parenchymatic root cells into hypertrophied and multinucleate cells, named giant cells. Giant cells result from synchronous repeated karyokinesis without cell division.7 Despite lack of complete cytokinesis, we demonstrated that cytokinesis is initiated and essential for giant cell ontogenesis.8 Fully differentiated giant cells reach a final size about four hundred times that of root vascular cells and contain more than a hundred polyploid nuclei. Giant cell nuclei show an increase in DNA, possibly reflecting endoreduplication.9 These “feeding” giant cells constitute the exclusive source of nutrients for the nematode until reproduction. Giant cell development is accompanied by division and hypertrophy of surrounding cells, leading to a typical root gall formation, the primary visible symptom of infection.  相似文献   

18.
Hydroxyurea (HU) at concentrations of 10 or 20 mg/liter was included in a medium on which excised tomato roots infected with the root-knot nematode Meloidogyne javanica were grown. In the HU, treated roots, giant cells were small and contained large vacuoles. Giant cell nuclei were amoeboidal with relatively small nucleoli in treated roots, compared with giant cells of nontreated galls. In treated-root giant cells, the cytoplasm was diffuse and few organelles such as mitochondria, dictyosomes, and endoplasmic reticulum were detected; also, walls of giant cells were thin with less extensive ingrowths than in nontreated roots. We conclude that HU suppressed normal giant cell formation interfering with its function as a feeding cell.  相似文献   

19.
The cellular responses induced by Meloidogyne arenaria races 1 and 2 in three soybean genotypes, susceptible CNS, resistant Jackson, and resistant PI 200538, were examined by light microscopy 20 days after inoculation. Differences in giant-cell development were greater between races than among the soybean genotypes. M. arenaria race 1 stimulated small, poorly formed giant-cells in contrast with M. arenaria race 2, which induced well-developed, thick-walled, multinucleate giant-cells. The number of nuclei per giant-celt was variable, but fewer nuclei were usually present in giant-cells induced by race 1 (mean 16 nuclei) than in giant-cells induced by race 2 (mean 41 nuclei). Differences observed in giant-cell development were related to differences in growth and maturation of M. arenaria races 1 and 2 and host suitability of the soybean genotypes.  相似文献   

20.
The nature of resistance in Cucumis ficifolius and C. metuliferus to the root-knot nematode, Meloidogyne incognita acrita, was studied under greenhouse conditions. Although as many larvae penetrated the roots of these species as those of the susceptible C. melo, few developed to the adult female stage. Resistance in C. ficifolius and C. metuliferus was associated with hindrance of larval development beyond the second stage, delayed development of larvae to adults and stimulation toward maleness. Tissue necrosis or hypersensitivity was not associated with larval penetration. Comparisons of the histopathology of 26-day-old infections of C. melo and C. metuliferus roots showed no observable differences in the type of giant cell development in regions of roots associated with adult females. However, in C. rnetuliferus immature nematodes were associated with small giant cells which were limited to a few cells near the head of the nematode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号