首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
Low-folate (LF) nutritional status is associated with increased risks of lung cancer. It has unexplored effects on lung cancer malignancy, a cancer stem cell (CSC) disease. We hypothesized that LF may reprogram CSC-like potential and bioenergetics metabolism to increase metastasis potential of lung cancers. Cultivation of human non-small-cell lung cancer cells (H23) in an LF medium enhanced CSC-like properties signified by increased expressions of the CSC surface marker CD44 and pluripotency markers Sox2, Oct4 and ALDH1A1, and promoted self-renewal ability of anchorage-independent oncospheroid formation. The CSC-like phenotype of LF-treated H23 cells coupled with the metabolic reprogramming to aerobic glycolysis evident by elevated lactate release and medium acidification suppressed expressions of pyruvate dehydrogenase E1-α, and elevated redox status of the NADH/NAD+ and NADPH/NADP+ ratios. The LF-induced metabostemness phenotype of H23 cells was modified by DNA methylation inhibitor 5-AdC and histone acetylation inhibitor EX. Treatment of H23 cells with mTOR siRNA or the mTOR inhibitor rapamycin abrogated LF-activated Akt-mTOR-Hif1-Foxo signaling and stemness-associated sonic hedgehog pathway, reversed Warburg metabolic switch and diminished invasion of H23 cells. Intrapleural injection of LF-induced lung oncospheres into the LF recipient mice, but not the control recipient mice, caused metastasis xenograft lung tumors. The in vitro and in vivo data corroboratively demonstrate that LF stress reprograms metabostemness signatures through activated mTOR signaling pathway to promote metastasis tumorigenicity of lung cancers.  相似文献   

3.
Cancer stem cells (CSCs) or tumor-initiating cells are thought to play critical roles in tumorigenesis, metastasis, drug resistance, and tumor recurrence. For the diagnosis and targeted therapy of CSCs, the molecular identity of biomarkers or therapeutic targets for CSCs needs to be clarified. In this study, we identified CD166 as a novel marker expressed in the sphere-forming CSC population of A2780 epithelial ovarian cancer cells and primary ovarian cancer cells. The CD166+ cells isolated from A2780 cells and primary ovarian cancer cells highly expressed CSC markers, including ALDH1a1, OCT4, and SOX2, and ABC transporters, which are implicated in the drug resistance of CSCs. The CD166+ cells exhibited enhanced CSC-like properties, such as increased sphere-forming ability, cell migration and adhesion abilities, resistance to conventional anti-cancer drugs, and high tumorigenic potential in a xenograft mouse model. Knockdown of CD166 expression in the sphere-forming ovarian CSCs abrogated their CSC-like properties. Moreover, silencing of CD166 expression in the sphere-forming CSCs suppressed the phosphorylation of focal adhesion kinase, paxillin, and SRC. These results suggest that CD166 plays a key role in the regulation of CSC-like properties and focal adhesion kinase signaling in ovarian cancer.  相似文献   

4.
5.
Ovarian cancers are the fifth leading cause of cancer death among US woman. The majority of ovarian cancers belong to a category of serous adenocarcinomas. This type of cancer is often diagnosed at a late stage of the disease. Surgical debulking, followed by chemotherapy is the current treatment. Half of all patients will die within 5 years of diagnosis of the disease. Poor survival may be due to disease progression as a consequence of development of drug resistance, cancer cell heterogeneity within the tumor, or the persistence of cancer stem cells. Cancer stem cells (CSC) are defined as a minority cell type in the tumor, which retains the capacity, through asymmetric division, for self-renewal as well as differentiation into multiple cell types. Through this process, CSC can regenerate the entire tumor phenotype and subsequent metastases. Initial in vitro work in the area of solid tumor CSC biology has focused on the isolation and propagation of cells with CSC-like properties from breast and colon tumors. Breast and colon cell lines with CSC-like properties have been isolated and maintained in vitro for extended periods of time. The in vitro maintenance of these CSC requires growth in hormone-supplemented serum-free media and the use of matrix or growth as tumor spheres (Roberts, Ricci-Vitiani et al., Cammareri et al.). Based on the pioneering work generating breast and colon CSC, our lab has begun to develop methods for the establishment cell lines with CSC-like properties from additional solid tumors. In this article, we describe methods, using defined medium, which allow for the successful establishment of continuous cell cultures from a minority cell type within serous ovarian cancers. The cell lines established using these methods grow in serum-free hormone-supplemented medium either as a monolayer on a matrix, or as tumor spheres in suspension. These cells express markers previously reported for tumor stem cells, including CD44 and CD133, and form tumors that recreate the morphology of the original patient tumor when implanted in immune deficient mice. The introduction of this method will facilitate the expansion of ovarian cancer cells for investigating cancer stem cell biology as well as providing tools to aid in the development of new treatments for this deadly disease.  相似文献   

6.
The restoration of pluripotency circuits by the reactivation of endogenous stemness factors, such as SOX2, may provide a new paradigm in cancer development. The tumoral stem cell reprogramming hypothesis, i.e., the ability of stemness factors to redirect normal and differentiated tumor cells toward a less-differentiated and stem-like state, adds new layers of complexity to cancer biology, because the effects of such reprogramming may remain dormant until engaged later in response to (epi)genetic and/or (micro)environmental events. To test this hypothesis, we utilized an in vitro model of a SOX2-overexpressing cancer stem cell (CSC)-like cellular state that was recently developed in our laboratory by employing Yamanaka’s nuclear reprogramming technology in the estrogen receptor α (ERα)-positive MCF-7 breast cancer cell line. Despite the acquisition of distinct molecular features that were compatible with a breast CSC-like cellular state, such as strong aldehyde dehydrogenase activity, as detected by ALDEFLUOR, and overexpression of the SSEA-4 and CD44 breast CSC markers, the tumor growth-initiating ability of SOX2-overexpressing CSC-like MCF-7 cells solely occurred in female nude mice supplemented with estradiol when compared with MCF-7 parental cells. Ser118 phosphorylation of estrogen receptor α (ERα), which is a pivotal integrator of the genomic and nongenomic E2/ERα signaling pathways, drastically accumulated in nuclear speckles in the interphase nuclei of SOX2-driven CSC-like cell populations. Moreover, SOX2-positive CSC-like cells accumulated significantly higher numbers of actively dividing cells, and the highest levels of phospho-Ser118-ERα occurred when chromosomes lined up on a metaphase plate. The previously unrecognized link between E2/ERα signaling and SOX2-driven stem cell circuitry may significantly impact our current understanding of breast cancer initiation and progression, i.e., SOX2 can promote non-genomic E2 signaling that leads to nuclear phospho-Ser118-ERα, which ultimately exacerbates genomic ER signaling in response to E2. Because E2 stimulation has been recently shown to enhance breast tumor-initiating cell survival by downregulating miR-140, which targets SOX2, the establishment of a bidirectional cross-talk interaction between the stem cell self-renewal regulator, SOX2, and the local and systemic ability of E2 to increase breast CSC activity may have profound implications for the development of new CSC-directed strategies for breast cancer prevention and therapy.  相似文献   

7.
8.
Epithelial mesenchymal transition (EMT) and cancer stem cells (CSC) have been associated with resistance to chemotherapy. Eighty percent of ovarian cancer patients initially respond to platinum-based combination therapy but most return with recurrence and ultimate demise. To better understand such chemoresistance we have assessed the potential role of EMT in tumor cells collected from advanced-stage ovarian cancer patients and the ovarian cancer cell line OVCA 433 in response to cisplatin in vitro. We demonstrate that cisplatin-induced transition from epithelial to mesenchymal morphology in residual cancer cells correlated with reduced E-cadherin, and increased N-cadherin and vimentin expression. The mRNA expression of Snail, Slug, Twist, and MMP-2 were significantly enhanced in response to cisplatin and correlated with increased migration. This coincided with increased cell surface expression of CSC-like markers such as CD44, α2 integrin subunit, CD117, CD133, EpCAM, and the expression of stem cell factors Nanog and Oct-4. EMT and CSC-like changes in response to cisplatin correlated with enhanced activation of extracellular signal-regulated kinase (ERK)1/2. The selective MEK inhibitor U0126 inhibited ERK2 activation and partially suppressed cisplatin-induced EMT and CSC markers. In vivo xenotransplantation of cisplatin-treated OVCA 433 cells in zebrafish embryos demonstrated significantly enhanced migration of cells compared to control untreated cells. U0126 inhibited cisplatin-induced migration of cells in vivo, suggesting that ERK2 signaling is critical to cisplatin-induced EMT and CSC phenotypes, and that targeting ERK2 in the presence of cisplatin may reduce the burden of residual tumor, the ultimate cause of recurrence in ovarian cancer patients.  相似文献   

9.
Cancer stem cells (CSCs) exhibit specific characteristics including decontrolled self-renewal, tumor-initiating, promoting, and metastatic potential, abnormal stemness signaling, and chemotherapy resistance. Thus, targeting CSC is becoming an emerging cancer treatment. α-Mangostin has been shown to have potent and multiple anticancer activities. Accordingly, we hypothesized that α-mangostin may diminish the stemness and proliferation of CSC-like cervical cancer cells. In our results, comparing to the parent cells, CSC-like SiHa and HeLa cells highly expressed CSC marker Sox2, Oct4, Nanog, CK-17, and CD49f. α-Mangostin significantly reduced the cell viability, sphere-forming ability, and expression of the CSC stemness makers of CSC-like cervical cancer cells. Further investigation showed that α-mangostin induced mitochondrial depolarization and mitochondrial apoptosis signaling, including upregulation of Bax, downregulation of Mcl-1 and Bcl-2, and activation of caspase-9/3. Moreover, α-mangostin synergically enhanced the cytotoxicity of cisplatin on CSC-like SiHa cells by promoting mitochondrial apoptosis and inhibiting the expression of CSC markers. Consistent with in vitro findings, in vivo tumor growth assay revealed that α-mangostin administration significantly inhibited the growth of inoculated CSC-like SiHa cells and synergically enhanced the antitumor effect of cisplatin. Our findings indicate that α-mangostin can reduce the stemness and proliferation of CSC-like SiHa and HeLa cells and promote the cytotoxicity of cisplatin, which may attribute to the mitochondrial apoptosis activation. Thus, it suggests that α-mangostin may have clinical potential to improve chemotherapy for cervical cancer by targeting cervical CSC.  相似文献   

10.
11.
12.
Cancer stem cells (CSCs) have been recognized as the significant cause of tumor recurrence. Long noncoding RNAs (lncRNAs) are involved in various cancers, including human laryngeal cancer. So far the correlation between lncRNA DiGeorge syndrome critical region gene 5 (DGCR5) and CSC-like properties in human laryngeal cancer remains barely known. In our current study, two human larynx squamous carcinoma cell lines (Hep-2 and Hep-2R) with different radio sensitivities were cultured. Interestingly, CSC-like phenotypes were much more enriched in Hep-2R cells. We found that DGCR5 was upregulated and microRNA-506 (miR-506) was downregulated in Hep-2R cells. In addition, silence of DGCR5 could inhibit the stemness and enhance the radiosensitivity of Hep-2R cells. Meanwhile, overexpression of miR-506 also suppressed the CSC-like traits and the radiosensitivity was increased significantly. In addition, miR-506 was predicted as target of DGCR5 and the correlation between them was validated in our study. Finally, we observed that Wnt pathway exerted a significant role in human laryngeal CSCs and DGCR5 inhibition could repress Wnt signaling activity by sponging miR-506. In vivo assays were performed and we found that DCGR5 depressed stemness of human laryngeal cancer cells through modulating miR-506 and Wnt signaling pathway. Taken these together, we reported that DGCR5 induced CSC-like properties by sponging miR-506 through activating Wnt in human laryngeal carcinoma cells.  相似文献   

13.
14.
Tumor resistance remains an obstacle to successfully treating oral squamous cell carcinoma (OSCC). Cisplatin is widely used as a cytotoxic drug to treat solid tumors, including advanced OSCC, but with low efficacy due to chemoresistance. Therefore, identifying the pathways that contribute to chemoresistance may show new possibilities for improving the treatment. This work explored the role of the tumor necrosis factor-alpha (TNF-alpha)/NFkB signaling in driving the cisplatin resistance of OSCC and its potential as a pharmacological target to overcome chemoresistance. Differential accessibility analysis demonstrated the enrichment of opened chromatin regions in members of the TNF-alpha/NFkB signaling pathway, and RNA-Seq confirmed the upregulation of TNF-alpha/NFkB signaling in cisplatin-resistant cell lines. NFkB was accumulated in cisplatin-resistant cell lines and in cancer stem cells (CSC), and the administration of TNF-alpha increased the CSC, suggesting that TNF-alpha/NFkB signaling is involved in the accumulation of CSC. TNF-alpha stimulation also increased the histone deacetylases HDAC1 and SIRT1. Cisplatin-resistant cell lines were sensitive to the pharmacological inhibition of NFkB, and low doses of the NFkB inhibitors, CBL0137, and emetine, efficiently reduced the CSC and the levels of SIRT1, increasing histone acetylation. The NFkB inhibitors decreased stemness potential, clonogenicity, migration, and invasion of cisplatin-resistant cell lines. The administration of the emetine significantly reduced the tumor growth of cisplatin-resistant xenograft models, decreasing NFkB and SIRT1, increasing histone acetylation, and decreasing CSC. TNF-alpha/NFkB/SIRT1 signaling regulates the epigenetic machinery by modulating histone acetylation, CSC, and aggressiveness of cisplatin-resistant OSCC and the NFkB inhibition is a potential strategy to treat chemoresistant OSCC.  相似文献   

15.
16.
Cancer biology research over recent decades has given ample evidence for the existence of self-renewing and drug-resistant populations within heterogeneous tumors, widely recognized as cancer stem cells (CSCs). However, a lack of clear understanding about the origin, existence, maintenance, and metastatic roles of CSCs limit efforts towards the development of CSC-targeted therapy. In this review, we describe novel avenues of current CSC biology. In addition to cell fusion and horizontal gene transfer, CSCs are originated by mutations in somatic or differentiated cancer cells, resulting in de-differentiation and reprogramming. Recent studies also provided evidence for the existence of distinct or heterogeneous CSC populations within a single heterogeneous tumor. Our analysis of the literature also opens the doors for a novel hypothesis that CSC populations with specific phenotypes, metabolic profiles, and clonogenic potential metastasize to specific organs.  相似文献   

17.
Cancer stem cells (CSC) are resistant to radiation and chemotherapy and play a significant role in cancer recurrence and metastatic disease. It is therefore important to identify alternative strategies, such as immunotherapies that can be used to control this refractory population. A CD44(+)CD24(-/low) subpopulation of cells within the B6 PyMT-MMTV transgenic mouse-derived AT-3 mammary carcinoma cell line was identified, which had CSC-like characteristics, including pluripotency and a resistance to chemo- and radiotherapy. Therefore, unlike xenograph models that require immunocompromised settings, this novel system may provide a means to study immune-mediated responses against CSC-like cells. The immunobiology of the AT-3 CSC-like cell population was studied by their surface molecule expression profile and their sensitivity to specified cell death pathways. Comparable levels of Rae-1, CD155, CD54 and higher levels of Fas and DR5 were expressed on the AT-3 CSC-like cells compared to non-CSC-like tumor cells. Expression correlated with an in vitro sensitivity to cell death by NK cells or through the ligation of the death receptors (Fas or DR5), by their ligands or anti-Fas and anti-DR5 mAbs. Indeed, compared to the rest of the AT-3 tumor cells, the CD44(+)CD24(-/low) subpopulation of cells were more sensitive to both Fas- and TRAIL-mediated cell death pathways. Therefore, despite the refractory nature of CSC to other conventional therapies, these CSC-like cells were not inherently resistant to specified forms of immune-mediated cell death. These results encourage the continued investigation into immunotherapeutic strategies as a means of controlling breast CSC, particularly through their cell death pathways.  相似文献   

18.
BAG3 is a member of the cochaperone BAG family and often highly expressed in various cancers. Recently, evidences show that BAG3 promotes stemness of human cancer cells. IFN-stimulated genes 15 (ISG15) is an ubiquitin-like molecule, which is covalently conjugated with substrates to form ISGylated proteins. Global screening BAG3 interacting partners demonstrated that ISG15 might be a potential binding partner. The current study revealed that BAG3 did not interact with ISG15, but positively regulated ISG15 expression in pancreatic ductal adenocarcinoma cancer (PDAC). It was further found that BAG3 deletion stabilized ISG15 mRNAs, while suppressed its translation via increasing Serine phosphorylation of Ago2 at position 387 (S387). Both BAG3 deletion and ISG15 knockdown suppressed stem cell-like phenotypes of PDAC cells, including clonogenicity, invasiveness and spheroid formation. In addition, ectopic ISG15 expression rescued the suppressive role of BAG3 deletion in cancer stem cell (CSC)-like phenotypes of PDAC cells, and this effect of ISG15 was independent of its ISGylation function. The current study implies that BAG3 and ISG15 may provide a therapeutic advantage for PDAC.  相似文献   

19.
20.
Whether embryonic, hematopoietic or cancer stem cells, this metabolic reprogramming is dependent on the nutrient-status and bioenergetic pathways that is influenced by the micro-environmental niches like hypoxia. Thus, the microenvironment plays a vital role in determining the stem cell fate by inducing metabolic reprogramming. Under the influence of the microenvironment, like hypoxia, the stem cells have increased glucose and glutamine uptake which result in activation of hexosamine biosynthesis pathway (HBP) and increased O-GlcNAc Transferase (OGT). The current review is focused on understanding how HBP, a nutrient-sensing pathway (that leads to increased OGT activity) is instrumental in regulating self-renewal not only in embryonic and hematopoietic stem cells (ESC/HSC) but also in cancer stem cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号