共查询到20条相似文献,搜索用时 15 毫秒
1.
Belonolaimus longicaudatus has been reported as damaging both potato (Solanum tuberosum) and cotton (Gossypium hirsutum). These crops are not normally grown in cropping systems together in areas where the soil is infested with B. longicaudatus. During the 1990s cotton was grown in a potato production region that was a suitable habitat for B. longicaudatus. It was not known how integrating the production of these two crops by rotation or double-cropping would affect the population densities of B. longicaudatus, other plant-parasitic nematodes common in the region, or crop yields. A 3-year field study evaluated the viability of both crops in monocropping, rotation, and double-cropping systems. Viability was evaluated using effects on population densities of plant-parasitic nematodes and yields. Rotation of cotton with potato was found to decrease population densities of B. longicaudatus and Meloidogyne incognita in comparison with continuous potato. Population densities of B. longicaudatus following double-cropping were greater than following continuous cotton. Yields of both potato and cotton in rotation were equivalent to either crop in monocropping. Yields of both crops were lower following double-cropping when nematicides were not used. 相似文献
2.
Photoperiod influences the migration of M. incognita juveniles toward tomato roots. Approximately 33% migrated vertically 20 cm in 7 days to roots when 12 h dark were alternated with 12 h light. Only 7% migrated when light was constant for 24 h. Vertical migration of M. incognita juveniles was studied at 14, 16, 18, 20, and 22 C. The migration of M. incognita juveniles begins at about 18 C and reaches its maximum at 22 C. The migration of M. hapla and M. incognita juveniles were compared at 14, 18, and 22 C. Juveniles of M. hapla were able to migrate at a lower temperature than those of M. incognita. With M. hapla, there was no significant difference in migration between 18 and 22 C. 相似文献
3.
Advance inoculation of the tomato cv. Celebrity or the pyrethrum clone 223 with host-incompatible Meloidogyne incognita or M. javanica elicited induced resistance to host-compatible M. hapla in pot and field experiments. Induced resistance increased with the length of the time between inoculations and with the population density of the induction inoculum. Optimum interval before challenge inoculation, or population density of inoculum for inducing resistance, was 10 days, or 5,000 infective nematodes per 500-cm³ pot. The induced resistance suppressed population increase of M. hapla by 84% on potted tomato, 72% on potted pyrethrum, and 55% on field-grown pyrethrum seedlings, relative to unprotected treatments. Pyrethrum seedlings inoculated with M. javanica 10 days before infection with M. hapla were not stunted, whereas those that did not receive the advance inoculum were stunted 33% in pots and 36% in field plots. The results indicated that advance infection of plants with incompatible or mildly virulent nematode species induced resistance to normally compatible nematodes and that the induced resistance response may have potential as a biological control method for plant nematodes. 相似文献
4.
Meloidogyne incognita, Hoplolaintus galeatus, and North Carolina and Georgia populations of Belonolaimus longicaudatus were introduced singly and in various combinations with Fusarium oxysporum f. sp. vasinfectum on wilt-susceptible ''Rowden'' cotton. Of all the nematodes, the combination of the N. C. population of B. longicaudatus with Fusarium promoted greatest wilt development. H. galeatus had no effect on wilt. With Fusarium plus M. incognito or B. longicaudatus, high nematode levels promoted greater wilt than low levels. The combination of either population of B. longicaudatus with M. incognita and Fusarium induced greater wilt development than comparable inoculum densities of either nematode alone or where H. galeatus was substituted for either of these nematodes. Nematode reproduction was inversely related to wilt development. Without Fusarium, however, the high inoculum level resulted in greater reproduction of all nematode species on cotton. Combining M. incognita with B. longicaudatus or H. galeatus gave mutually depressive effects on final nematode populations. The interactions of H. gateatus with B. longicaudatus varied with two populations of the latter. 相似文献
5.
Relationships between nematode density and yield and between final and preplant population levels were examined in small maize plots on sandy soils in north-central Florida. Plant-parasitic nematodes present in the community included Belonolaimus longicaudatus, Criconemella sphaerocephala, Meloidogyne incognita, Paratrichodorus minor, Pratylenchus brachyurus, and a Xiphinema sp. Plant growth--including stand count, grain yield, stalk weight, and size of young plants--often was inversely correlated (P ≤ 0.05) with densities of B. longicaudatus and occasionally with P. brachyurus, but not with densities of other species or with a range of soil variables. More severe losses in grain yields from B. longicaudatus occurred in 1987 than in 1988, although mean preplant nematode densities in February were similar in both years (4.4 vs. 3.9/100 cm³ soil). Final population densities of most nematode species were linearly related (P ≤ 0.05) to densities measured at planting or earlier. These relationships were stronger (higher r²) with the ectoparasites B. longicaudatus and C. sphaerocephala than with the endoparasites M. incognita and P. brachyurus. No significant correlations were found between population densities of different nematode species. 相似文献
6.
Infection of plants by root-knot nematodes is often accompanied by physiological changes characteristic of ageing. Ultra-low tissue luminescence of infected plants indicated oxidation of cell-membrane lipids. Cells with membranes subjected to oxidation lose some of their capacity for water retention. Treating tomato and radish with lidocaine hydrochloride, an inhibitor of lipid oxidation, retarded above-ground symptoms of root-knot nematode infection and of ageing. 相似文献
7.
The endoparasitic nematophagous fungus Meria coniospora reduced root-knot nematode galling on tomatoes in greenhouse pot trials. The fungus was introduced to pots by addition of conidia at several inoculum levels directly to the soil or addition of nematodes infected with M. coniospora to the soil; both methods reduced root galling by root-knot nematodes. These studies represent a part of a recently initiated effort to evaluate the potential of endoparasitic nematophagous fungi for biocontrol of nematodes. 相似文献
8.
Nematode and disease problems of irrigated, double-cropped soybean and corn, and zinc deficiency of corn were investigated. Ethylene dibromide, phenamiphos, and aldicarb were equally effective for controlling nematodes and increasing yields of corn planted minimum-till and soybean planted in a moldboard plow prepared seedbed. The residual effects on yields of nematicides applied to the preceeding crop occurred during 3 years for soybean and 1 year for corn. Fusarium wilt symptoms of soybean that developed during 2 years of the study were less severe in all nematicide-treated plots than in control plots. Typical zinc deficiency symptoms on 30-day-old corn plants were observed during 1 year of the study in certain plots. Symptoms were not evident on plants grown on plots treated with ethylene dibromide, and only occasional plants had symptoms on plots treated with phenamiphos and aldicarb. The amount of yield response directly related to nematode control could not be determined because of the apparent interaction of nematodes on the expression of Fusarium wilt of soybean. Our study strongly indicates that the expression of Fusarium wilt of soybean and zinc deficiency in corn are influenced by nematodes and that nematicides will reduce their severity. 相似文献
9.
Vertical distribution of five plant-parasitic nematodes was examined in two north Florida soybean fields in 1987 and 1988. Soil samples were collected from 0-15 cm, 15-30 cm, and 30-45 cm deep at each site. Soil at the three depths consisted of approximately 96% sand. More than 50% of Belonolaimus longicaudatus population densities occurred in the upper 15-cm soil layer at planting, but the species became more evenly distributed through the other depths as the season progressed. Criconemella sphaerocephala was evenly distributed among the three depths in one field but was low (< 20% of the total density) in the upper 15 cm at a second site. Maximum population densities of Pratylenchus brachyurus were observed at 15-30 cm on most sampling dates. Vertical distributions of Meloidogyne incognita and Paratrichodorus minor were erratic and showed seasonal variation. A diagnostic sample from the upper 0-15 cm of these soybean fields revealed only a minority of the populations of most of the phytoparasitic species present. 相似文献
10.
Robert A. Kinloch 《Journal of nematology》1986,18(4):464-467
1,3-Dichloropropene (1,3-D) at rates of 17.2 to 51.6 liters/ha applied 3 days preplant or at planting significantly (P < 0.05) reduced the amount of galling on roots of soybean grown in sites infested with Meloidogyne incognita or M. arenaria. Populations of M. incognita second-stage juveniles at harvest were significantly (P < 0.05) reduced by all treatments. Only the 51.6-liters/ ha treatments and a 3-day preplant 34.4-liters/ha application significantly reduced at-harvest juvenile infestations of M. arenaria. Equations (P < 0.001) relating soybean yield and 1,3-D dosage indicated soybean phytotoxicity at the upper range of the nematicide rates. The maximum yield response was predicted at 40 liters/ha applied 3 days preplant at both infestation sites. Maximum yield response was predicted with 30 liters/ha applied at planting to M. incognita-infested soil and from 25 liters/ha applied at planting to M. arenaria-infested soil. Application of economic factors suggested that management of M. incognita may be cost effective with at-plant treatments of low rates of 1,3-D. Yield responses of M. arenaria-infected soybean exposed to similar treatments were insufficient to justify their use at prevailing prices. 相似文献
11.
Jinya Jack Qiu Becky B. Westerdahl Cindy Anderson Valerie M. Williamson 《Journal of nematology》2006,38(4):434-441
We have developed a simple PCR assay protocol for detection of the root-knot nematode (RKN) species Meloidogyne arenaria, M. incognita, and M. javanica extracted from soil. Nematodes are extracted from soil using Baermann funnels and centrifugal flotation. The nematode-containing fraction is then digested with proteinase K, and a PCR assay is carried out with primers specific for this group of RKN and with universal primers spanning the ITS of rRNA genes. The presence of RKN J2 can be detected among large numbers of other plant-parasitic and free-living nematodes. The procedure was tested with several soil types and crops from different locations and was found to be sensitive and accurate. Analysis of unknowns and spiked soil samples indicated that detection sensitivity was the same as or higher than by microscopic examination. 相似文献
12.
Brassicaceous cover crops can be used for biofumigation after soil incorporation of the mowed crop. This strategy can be used to manage root-knot nematodes (Meloidogyne spp.), but the fact that many of these crops are host to root-knot nematodes can result in an undesired nematode population increase during the cultivation of the cover crop. To avoid this, cover crop cultivars that are poor or nonhosts should be selected. In this study, the host status of 31 plants in the family Brassicaceae for the three root-knot nematode species M. incognita, M. javanica, and M. hapla were evaluated, and compared with a susceptible tomato host in repeated greenhouse pot trials. The results showed that M. incognita and M. javanica responded in a similar fashion to the different cover cultivars. Indian mustard (Brassica juncea) and turnip (B. rapa) were generally good hosts, whereas most oil radish cultivars (Raphanus. sativus ssp. oleiferus) were poor hosts. However, some oil radish cultivars were among the best hosts for M. hapla. The arugula (Eruca sativa) cultivar Nemat was a poor host for all three nematode species tested. This study provides important information for chosing a cover crop with the purpose of managing root-knot nematodes. 相似文献
13.
S. M. Schneider 《Journal of nematology》1991,23(2):225-228
Rates of penetration of Meloidogyne incognita, M. arenaria, and M. javanica into tobacco cultivars NC2326 (susceptible to all three species) and K399 (resistant to M. incognita) and a breeding line that had been selected for resistance to M. incognita were compared. Meloidogyne incognita penetrated NC2326 rapidly during the first 24 hours after inoculation. Numbers of M. incognita continued to increase gradually through the 14-day experiment. Higher numbers of M. incognita were observed in the roots of K399 during the first 24 hours than were observed in NC2326. The number of M. incognita in K399 peaked 4 days after inoculation, then declined rapidly as the nematodes that were unable to establish a feeding site left the root or died. Numbers of M. incognita in the breeding line followed the same pattern as with K399, but in lower numbers. Numbers of M. arenaria showed little difference between cultivars until 7 days after inoculation, then numbers increased in NC2326. Numbers of M. javanica fluctuated in all cultivars, resulting in patterns of root population different from those observed for M. incognita or M. arenaria. Resistance to M. incognita appears to be expressed primarily as an inability to establish a feeding site rather than as a barrier to penetration. Some resistance to M. arenaria may also be present in K399 and the breeding line. 相似文献
14.
Giant cells induced in roots of Impatiens balsamina by Meloidogyne javanica and Meloidogyne incognita have been examined by light and electron microscopy. The first sign of giant-cell formation was division of cells surrounding a larva. Cell plate alignment appeared to proceed normally, but cytokinesis was unsuccessful and binucleate cells formed subsequently. No wall breakdown was evident then or later. The number of nuclei appeared to increase by repeated mitosis without separation by cytokinesis. Although no holes in walls were observed, wall stubs were found, and mechanisms for their formation are suggested. 相似文献
15.
William T. Crow 《Journal of nematology》2013,45(3):223-227
Belonolaimus longicaudatus is an important parasite of both warm-season bermudagrass and winter overseed grasses used on golf courses in the southeastern United States. Field trials were conducted to study the effects of a commercial formulation of Paecilomyces lilacinus strain 251 applied to overseed grasses during the winter and early spring on population density of B. longicaudatus and bermudagrass health in late spring after bermudagrass broke dormancy. These studies found that P. lilacinus reduced numbers of B. longicaudatus in most cases, but not below damaging levels. Multiple applications of 1 × 1010 spores/m2 were generally more effective than 2 × 1010 spores/m2 in reducing nematode numbers and improving turf roots. These results indicate that application of this formulation of P. lilacinus strain 251 to overseeded turf in the spring may be a useful integrated pest management tool for B. longicaudatus on bermudagrass, but is not sufficient as a stand-alone nematode management tactic. 相似文献
16.
Root-knot nematode resistance of F₁ progeny of an intraspecific hybrid (Lycopersicon peruvianum var. glandulosum Acc. No. 126443 x L. peruvianum Acc. No. 270435), L. esculentum cv. Piersol (possessing resistance gene Mi), and L. esculentum cv. St. Pierre (susceptible) was compared. Resistance to 1) isolates of two Meloidogyne incognita populations artificially selected for parasitism on tomato plants possessing the Mi gene, 2) the wild type parent populations, 3) four naturally occurring resistance (Mi gene)-breaking populations of M. incognita, M. arenaria, and two undesignated Meloidogyne spp., and 4) a population of M. hapla was indexed by numbers of egg masses produced on root systems in a greenhouse experiment. Artificially selected M. incognita isolates reproduced abundantly on Piersol, but not (P = 0.01) on resistant F₁ hybrids. Thus, the gene(s) for resistance in the F₁ hybrid differs from the Mi gene in Piersol. Four naturally occurring resistance-breaking populations reproduced extensively on Piersol and on the F₁ hybrid, demonstrating ability to circumvent both types of resistance. Meloidogyne hapla reproduced on F₁ hybrid plants, but at significantly (P = 0.01) lower levels than on Piersol. 相似文献
17.
Greenhouse lysimeter and field microplot tests were conducted to evaluate the effects of Meloidogyne incognita and M. javanica on plant water relations and growth performance of NC 2326 flue-cured tobacco. In the greenhouse, afternoon leaf water potential values at 8-11 weeks after transplanting were lower by as much as 0.22 MPa in plants infected with either nematode than in the control plants. From 11 to 22 weeks, leaf water potential values were similar in all treatments. Over the course of the 22-week experiment, all infected plants showed similar evapotranspiration patterns, and plants in these treatments used 87-88% of the water utilized by noninfected plants. Biomass production from nematode-infected plants, however, was only about 50% of the biomass of control plants. The field microplot study showed water use patterns similar to those in the lysimeter study. 相似文献
18.
19.
Tall fescue grass cultivars with or without endophytes were evaluated for their susceptibility to Meloidogyne incognita in the greenhouse. Tall fescue cultivars evaluated included, i) wild-type Jesup (E+, ergot-producing endophyte present), ii) endophyte-free Jesup (E-, no endophyte present), iii) Jesup (Max-Q, non-ergot producing endophyte) and iv) Georgia 5 (E+). Peach was included as the control. Peach supported greater (P ≤ 0.05) reproduction of M. incognita than all tall fescue cultivars. Differences in reproduction were not detected among the tall fescue cultivars and all cultivars were rated as either poor or nonhosts for M. incognita. Suppression of M. incognita reproduction was not influenced by endophyte status. In two other greenhouse experiments, host susceptibility of tall fescue grasses to two M. incognita isolates (BY-peach isolate and GA-peach isolate) did not appear to be related to fungal endophyte strain [i.e., Jesup (Max-Q; nontoxic endophyte strain) vs. Bulldog 51 (toxic endophyte strain)]. Host status of tall fescue varied with species of root-knot nematode. Jesup (Max-Q) was rated as a nonhost for M. incognita (BY-peach isolate and GA-peach isolate) and M. hapla, a poor host for M. javanica and a good host for M. arenaria. Bulldog 51 tall fescue was also a good host for M. arenaria and M. javanica, but not M. incognita. Jesup (Max-Q) tall fescue may have potential as a preplant control strategy for M. incognita and M. hapla in southeastern and northeastern United States, respectively. 相似文献
20.
The influence of plant resistance on the size of individual root-knot nematodes was determined in greenhouse experiments. Five genotypes of alyceclover were inoculated with second-stage juveniles of Meloidogyne incognita race 3 or M. arenaria race 1. Plants were harvested at selected intervals and stained for detection of the nematodes, which were dissected from the roots. Length, width, and sagittal-sectional area of each animal were measured using an image-analysis system, and areas of nematodes in all stages were compared at different times and across alyceclover lines. Nematodes feeding on roots of resistant lines were consistently smaller than those on susceptible plants, with significant differences in growth detected after the final molt. Similar results were observed with both nematode species. 相似文献