首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
Meloidogyne incognita, Hoplolaintus galeatus, and North Carolina and Georgia populations of Belonolaimus longicaudatus were introduced singly and in various combinations with Fusarium oxysporum f. sp. vasinfectum on wilt-susceptible ''Rowden'' cotton. Of all the nematodes, the combination of the N. C. population of B. longicaudatus with Fusarium promoted greatest wilt development. H. galeatus had no effect on wilt. With Fusarium plus M. incognito or B. longicaudatus, high nematode levels promoted greater wilt than low levels. The combination of either population of B. longicaudatus with M. incognita and Fusarium induced greater wilt development than comparable inoculum densities of either nematode alone or where H. galeatus was substituted for either of these nematodes. Nematode reproduction was inversely related to wilt development. Without Fusarium, however, the high inoculum level resulted in greater reproduction of all nematode species on cotton. Combining M. incognita with B. longicaudatus or H. galeatus gave mutually depressive effects on final nematode populations. The interactions of H. gateatus with B. longicaudatus varied with two populations of the latter.  相似文献   

2.
Pearl millet (Pennisetum glaucum) has potential as a grain crop for dryland crop production in the southeastern United States. Whether or not pearl millet will be compatible in rotation with cotton (Gossypium hirsutum), corn (Zea mays), and peanut (Arachis hypogaea) will depend, in part, on its host status for important plant-parasitic nematodes of these crops. The pearl millet hybrid ''TifGrain 102'' is resistant to both Meloidogyne incognita race 3 and M. arenaria race 1; however, its host status for other plant-parasitic nematodes was unknown. In this study, the reproduction of Belonolaimus longicaudatus, Paratrichodorus minor, Pratylenchus brachyurus, and Meloidogyne javanica race 3 on pearl millet (''HGM-100'' and TifGrain 102) was compared relative to cotton, corn, and peanut. Separate greenhouse experiments were conducted for each nematode species. Reproduction of B. longicaudatus was lower on peanut and the two millet hybrids than on cotton and corn. Reproduction of P. minor was lower on peanut and TifGrain 102 than on cotton, corn, and HGM-100. Reproduction of P. brachyurus was lower on both millet hybrids than on cotton, corn, and peanut. Reproduction of M. javanica race 3 was greater on peanut than on the two millet hybrids and corn. Cotton was a nonhost. TifGrain 102 was more resistant than HGM-100 to reproduction of B. longicaudatus, P. minor, and M. javanica. Our results demonstrated that TifGrain 102 was a poor host for B. longicaudatus and P. brachyurus (Rf < 1) and, relative to other crops tested, was less likely to increase densities of P. minor and M. javanica.  相似文献   

3.
The relationships between densities of all members of a plant-parasitic nematode community and yield of ''Davis'' soybean and between final and preplant population levels were examined in small plots on sandy soils in north-central Florida. Plant-parasitic nematodes present in the community included Belonolaimus longicaudatus, Criconemella sphaerocephala, Meloidogyne incognita, Paratrichodorus minor, Pratylenchus brachyurus, and Xiphinema sp. Plant growth, including stand count, soybean yield (kg/ha), and size of young plants, was occasionally inversely correlated (P ≤ 0.05) with densities of B. longicaudatus or P. brachyurus, but not with densities of other species or with a range of soil variables. The nature of this relationship varied with season, with more severe stand losses noted during 1987 than in 1988. Final population densities (Pf) of most nematode species showed significant (P ≤ 0.05) linear relationships to densities measured at planting or earlier (Pi). These relationships were stronger (higher r²) with the ectoparasite B. longicaudatus than with the endoparasites M. incognita and P. brachyurus. Criconemella sphaerocephala declined under soybean cultivation, reaching levels near zero after two seasons. A quadratic model showed an improvement (P ≤ 0.05) over the linear model in describing the relationship between Pf and Pi measured at planting for B. longicaudatus, and gave a better indication of the leveling off of Pf at high values of Pi.  相似文献   

4.
Interactions among Meloidogyne incognita, Pratylenchus brachyurus, and soybean genotype on plant growth and nematode reproduction were studied in a greenhouse. Coker 317 (susceptible to both nematodes) and Gordon (resistant to M. incognita, susceptible to P. brachyurus) were inoculated with increasing initial population densities (Pi) of both nematodes individually and combined. M. incognita and P. brachyurus individually usually suppressed shoot growth of both cultivars, but only root growth on Coker 317 was influenced by a M. incognita × P. brachyurus interaction. Reproduction of both nematodes, although dependent on Pi, was mutually suppressed on Coker 317. P. brachyurus reproduced better on Gordon than on Coker 317 but did not affect resistance to M. incognita. Root systems of Coker 317 were split and inoculated with M. incognita or P. brachyurus or both to determine the nature of the interaction. M. incognita suppressed reproduction of P. brachyurus either when coinhabiting a half-root system or infecting opposing half-root systems; however, P. brachyurus affected M. incognita only if both nematodes infected the same half-root system.  相似文献   

5.
In an 8-year sod-based rotation study, nematode population densities varied with different row-crop sequences and grass sods. In continuous row-crop rotations (cotton-corn-peanut), cotton and corn favored rapid increase of Belonolaimus longicaudatus and Trichodorus christiei. Numbers of Pratylenchus brachyurus were quite variable on all crops. Peanuts favored an increase of Criconemoides ornatum but suppressed the other three species. ''Coastal'' bermudagrass supported more than twice the number of B. longicaudatus than did ''Pensacola'' bahiagrass. Numbers of T. christiei and P. brachyurus also were larger on bermudagrass than on bahiagrass. Numbers of C. ornatum were largest in row-crop sequence culture. Average numbers of B. longicaudatus, T. christiei, and P. brachyurus in a sod-based, 3-years of row-crop sequence were smallest when cotton and corn did not follow each other. These nematodes were further suppressed when the sequence corn-peanut-cotton followed bahiagrass. Numbers of C. ornatum were smallest when corn and cotton followed each other, except after 3 years of bahiagrass. Nematode populations were less influenced by row-crop sequence following bermudagrass than they were following bahiagrass.  相似文献   

6.
In a greenhouse pot experiment on the pathogenicity and interactions of Meloidogyne incognita, M. hapla and Pratylenchus brachyurus on four cultivars o f tobacco the cultivars ''Hicks'' and ''NC 2326'' were susceptible to each nematode and "NC 95'' and ''NC 2512'' resistant only to M. incognita.Mean heights of susceptible plants were depressed but fresh weight of tops did not differ significantly. Meloidogyne spp. increased fresh weight of susceptible (but not the resistant) roots.Reproduction of M. incognita was decreased in the presence of P. brachyurus in one case. M. hapla reproduction was less with either of the other nematodes in five out of eight cases. In 12 combinations involving P. brachyurus, reproduction of this species was depressed in seven, not affected in four and increased in one.Mechanisms involved in associative interactions were not identified but appeared to be indirect and to involve individual host-nematode responses.  相似文献   

7.
Relationships between nematode density and yield and between final and preplant population levels were examined in small maize plots on sandy soils in north-central Florida. Plant-parasitic nematodes present in the community included Belonolaimus longicaudatus, Criconemella sphaerocephala, Meloidogyne incognita, Paratrichodorus minor, Pratylenchus brachyurus, and a Xiphinema sp. Plant growth--including stand count, grain yield, stalk weight, and size of young plants--often was inversely correlated (P ≤ 0.05) with densities of B. longicaudatus and occasionally with P. brachyurus, but not with densities of other species or with a range of soil variables. More severe losses in grain yields from B. longicaudatus occurred in 1987 than in 1988, although mean preplant nematode densities in February were similar in both years (4.4 vs. 3.9/100 cm³ soil). Final population densities of most nematode species were linearly related (P ≤ 0.05) to densities measured at planting or earlier. These relationships were stronger (higher r²) with the ectoparasites B. longicaudatus and C. sphaerocephala than with the endoparasites M. incognita and P. brachyurus. No significant correlations were found between population densities of different nematode species.  相似文献   

8.
The pathogenicity of Heterodera glycines, Meloidogyne incognita, and Pratylenchus penetrans on H. glycines-resistant ''Bryan,'' tolerant-susceptible ''G88-20092,'' and intolerant-susceptible ''Tracy M'' soybean cultivars was tested using plants grown in 800 cm³ of soil in 15-cm-diam. clay pots in three greenhouse experiments. Plants were inoculated with 0, 1,000, 3,000, or 9,000 H. glycines race 3 or M. incognita eggs, or vermiform stages of P. penetrans/pot. Forty days after inoculation, nmnbers of all three nematodes, except H. glycines on Bryan, generally increased with increasing inoculum levels in Experiment I. Heterodera glycines and M. incognita significantly decreased growth only of Tracy M. At 45 and 57 days after inoculation with 6,000 individuals/pot in experiments II and III, respectively, significantly more P. penetrans and M. incognita than H. glycines were found on Bryan. However, H. glycines and M. incognita population densities were greater than P. penetrans on G88-20092 and Tracy M. Growth of Tracy M infected by H. glycines and M. incognita and growth of G88-20092 infected by M. incognita decreased in Experiment III. Pratylenchus penetrans did not affect plant growth. Reduction in plant growth differed according to the particular nematode species and cultivar, indicating that nematodes other than the species for which resistance is targeted can have different effects on cultivars of the same crop species.  相似文献   

9.
Rates of reproduction of root-knot nematodes on corn varied with Meloidogyne species, with different populations of certain species, and with corn cultivars. M. arenaria, M. incognita and M. javanica reproduced at varying rates on all corn cultivars tested. None of the three selections of M. hapla reproduced on corn. Most of the Meloidogyne populations increased more rapidly on ''Coker'' and ''Pioneer'' hybrids than on ''McNair'' hybrids or on open-pollinated varieties or inbreds. Nematodes often reduced root growth, but the differences within given nematode-cultivar treatments were not usually significant. Root growth of ''Coker 911,'' which supported a high rate of reproduction, was affected less than ''Pioneer 309B'' which supported a low rate of nematode reproduction.  相似文献   

10.
Host suitability of olive cultivars Arbequina and Picual to several plant-parasitic nematodes was studied under controlled conditions. Arbequina and Picual were not suitable hosts for the root-lesion nematodes Pratylenchus fallax, P. thornei, and Zygotylenchus guevarai. However, the ring nematode Mesocriconema xenoplax and the spiral nematodes Helicotylenchus digonicus and H. pseudorobustus reproduced on both olive cultivars. The potential of Meloidogyne arenaria race 2, M. incognita race 1, and M. javanica, as well as P. vulnus and P. penetrans to damage olive cultivars, was also assessed. Picual planting stocks infected by root-knot nematodes showed a distinct yellowing affecting the uppermost leaves, followed by a partial defoliation. Symptoms were more severe on M. arenaria and M. javanica-infected plants than on M. incognita-infected plants. Inoculation of plants with 15,000 eggs + second-stage juveniles/pot of these Meloidogyne spp. suppressed the main height of shoot and number of nodes of Arbequina, but not Picual. Infection by each of the two lesion nematodes (5,000 nematodes/pot) or by each of the three Meloidogyne spp. suppressed (P < 0.05) the main stem diameter of both cultivars. On Arbequina, the reproduction rate of Meloidogyne spp. was higher (P < 0.05) than that of Pratylenchus spp.; on Picual, Pratylenchus spp. reproduction was higher (P < 0.05) than that of Meloidogyne spp.  相似文献   

11.
A disease complex involving Meloidogyne incognita and Rhizoctonia solani was associated with stunting of grapevines in a field nursery. Nematode reproduction was occurring on both susceptible and resistant cultivars, and pot experiments were conducted to determine the virulence of this M. incognita population, and of M. javanica and M. hapla populations, to V. vinifera cv. Colombard (susceptible) and to V. champinii cv. Ramsey (regarded locally as highly resistant). The virulence of R. solani isolates obtained from roots of diseased grapevines also was determined both alone and in combination with M. incognita. Ramsey was susceptible to M. incognita (reproduction ratio 9.8 to 18.4 in a shadehouse and heated glasshouse, respectively) but was resistant to M. javanica and M. hapla. Colombard was susceptible to M. incognita (reproduction ratio 24.3 and 41.3, respectively) and M. javanica. Shoot growth was suppressed (by 35%) by M. incognita and, to a lesser extent, by M. hapla. Colombard roots were more severely galled than Ramsey roots by all three species, and nematode reproduction was higher on Colombard. Isolates of R. solani assigned to putative anastomosis groups 2-1 and 4, and an unidentified isolate, colonized and induced rotting of grapevine roots. Ramsey was more susceptible to root rotting than Colombard. Shoot growth was inhibited by up to 15% by several AG 4 isolates and by 20% by the AG 2-1 isolate. AG 4 isolates varied in their virulence. Root rotting was higher when grapevines were inoculated with both M. incognita and R. solani and was highest when nematode inoculation preceded the fungus. Shoot weights were lower when vines were inoculated with the nematode 13 days before the fungus compared with inoculation with both the nematode and the fungus on the same day. It was concluded that both the M. incognita population and some R. solani isolates were virulent against both Colombard and Ramsey, and that measures to prevent spread in nursery stock were therefore important.  相似文献   

12.
A commercial formulation of furfural was recently launched in the United States as a turfgrass nematicide. Three field trials evaluated efficacy of this commercial formulation on dwarf bermudagrass putting greens infested primarily with Belonolaimus longicaudatus, Meloidogyne graminis, or both these nematodes, and in some cases with Mesocriconema ornatum or Helicotylenchus pseudorobustus. In all these trials, furfural improved turf health but did not reduce population densities of B. longicaudatus, M. graminis, or the other plant-parasitic nematodes present. In two additional field trials, efficacy of furfural at increasing depths in the soil profile (0 to 5 cm, 5 to 10 cm, and 10 to 15 cm) against B. longicaudatus on bermudagrass was evaluated. Reduction in population density of B. longicaudatus was observed in furfural-treated plots for depths below 5 cm on several dates during both trials. However, no differences in population densities of B. longicaudatus were observed between the furfural-treated plots and the untreated control for soil depth of 0 to 5 cm during either trial. These results indicate that furfural applications can improve health of nematode-infested turf and can reduce population density of plant-parasitic nematodes in turf systems. Although the degree to which turf improvement is directly caused by nematicidal effects is still unclear, furfural does appear to be a useful nematode management tool for turf.  相似文献   

13.
Rates of nematode penetration and the histopathology of root infections in fluecured tobacco cultivars ''McNair-944,'' ''Speight G-28,'' and ''NC-89'' with either Meloidogyne arenaria, M. incognita, M. hapla, or M. javanica were investigated. Penetration of root tips by juveniles of all species into the M. incognita-resistant NC-89 and G-28 was much less than that on the susceptible McNair-944. Few juveniles of M. incognita were detected in resistant cultivars 7 and 14 days after inoculation. Infection sites exhibited some cavities and extensive necrotic tissue at 14 days; less necrotic tissue and no intact nematodes were observed 35 days after inoculation. Although some females of M. arenaria reached maturity and produced eggs, considerable necrosis was induced in the resistant cultivars. Meloidogyne hapla and M. javanica developed on all cultivars, but there was necrotic tissue at some infection sites in the resistant cultivars. The occurrence of single multistructured nuclei in the syncytia of most M. hapla infections differed from the numerous small nuclei found in syncytia caused by the other three species.  相似文献   

14.
The host-parasite relationships of 13 species of plant parasitic nematodes and five species of hardwoods native to the southeastern United States were tested on greenhouse-grown tree seedlings for 6-10 months. Criteria for parasitism were completion o f life cycle and population increase of nematodes. Belonolaimus longicaudatus, Helicotylenchus dihystera, Scutellonema brachyurum and Tylenchorhynchus claytoni parasitized and reproduced on three or more of the species tested. Hoplolaimus galeatus and Pratylenchus brachyurus parasitized two species, Trichodorus christiei and Criconemoides xenoplax parasitized only red maple. Meloidogyne javanica/Liriodendron tulipifera combination was the only positive root-knot nematode/hardwood host-parasite relationship. Hemicycliophora silvestris, Meloidogyne arenaria, M. incognita, and M. hapla were not parasites of the tree species tested.  相似文献   

15.
Greenhouse studies examined population densities of Meloidogyne incognita race 4 on soybean (Glycine max ''Davis'') defoliated by larvae of soybean looper (Pseudoplusia indudens (Walker)). Plants were defoliated over a 2-week period beginning 5 weeks after seedlings were transplanted. Four groups of plants were infested with nematodes (5,000 eggs/pot) at 2-week intervals to allow harvesting of plants at 0, 2, 4, and 6 weeks postdefoliation (WPD). Plants in each group were harvested 4 weeks after nematode infestation. Root and nodule weights of defoliated plants were suppressed at 0 WPD, but differences were not detectable at 2, 4, and 6 WPD. Population densities of M. incognita were similar on defoliated and control plants at 0 WPD but were greater on defoliated plants at 4 and 6 WPD. Percentage hatching of eggs produced on the latter plants also was higher. Effects of insect-induced defoliation on development of M. incognita remained detectable even after soybean plant growth apparently returned to normal.  相似文献   

16.
The effects of Meloidogyne incognita and Thielaviopsis basicola on the growth of cotton (Gossypium hirsutum) and the effects of T. basicola on M. incognita populations were evaluated in a 2-year study. Microplots were infested with M. incognita, T. basicola, or a combination of M. incognita and T. basicola. Uninfested plots served as controls both years. Seedling survival was decreased by the M. incognita + T. basicola treatment compared to the control. Meloidogyne incognita alone and M. incognita + T. basicola reduced plant height-to-node ratio for seedlings in both years. Seed cotton yield was reduced, and the length of time required for boll maturation was lengthened by M. incognita + T. basicola in 1994 and M. incognita both alone and with T. basicola in 1995. Position of the first sympodial node on the main stem was increased by M. incognita in both years and was higher for plants treated with M. incognita + T. basicola in 1995 in comparison to the control. The number of sympodial branches with bolls in the first and second fruiting position and the percentage of bolls retained in the second position were reduced both years by M. incognita + T. basicola compared to either the control or T. basicola alone. Orthogonal contrasts indicated that effects on height-to-node ratio, number of days to first cracked boll, and yield were significantly different for combined pathogen inoculations than with either pathogen alone. Meloidogyne incognita eggs at harvest were reduced by T. basicola in 1994 and 1995 compared to M. incognita alone. The study demonstrated a significant interaction between M. incognita and T. basicola on cotton that impacted the survival and development of cotton and the reproduction of M. incognita on cotton.  相似文献   

17.
Belonolaimus longicaudatus has been reported as damaging both potato (Solanum tuberosum) and cotton (Gossypium hirsutum). These crops are not normally grown in cropping systems together in areas where the soil is infested with B. longicaudatus. During the 1990s cotton was grown in a potato production region that was a suitable habitat for B. longicaudatus. It was not known how integrating the production of these two crops by rotation or double-cropping would affect the population densities of B. longicaudatus, other plant-parasitic nematodes common in the region, or crop yields. A 3-year field study evaluated the viability of both crops in monocropping, rotation, and double-cropping systems. Viability was evaluated using effects on population densities of plant-parasitic nematodes and yields. Rotation of cotton with potato was found to decrease population densities of B. longicaudatus and Meloidogyne incognita in comparison with continuous potato. Population densities of B. longicaudatus following double-cropping were greater than following continuous cotton. Yields of both potato and cotton in rotation were equivalent to either crop in monocropping. Yields of both crops were lower following double-cropping when nematicides were not used.  相似文献   

18.
The response of the peach scion cultivars, Jerseyqueen, Redhaven, Compact Redhaven, and Rio Oso Gem and rootstocks ''Lovely and ''Nemaguard'' to inoculation with Meloidogyne incognita was compared in vitro and in microplots. One or more parameters monitored in vitro correlated with at least one parameter monitored in microplots, 4 years after tree planting (1989). A range of responses was observed from highlysusceptible in Lovell to resistant in Nemaguard. In vitro and microplot data suggest high and moderate levels of resistance to M. incognita in Compact Redhaven and Redhaven, respectively. Both Jerseyqueen and Rio Oso Gem were susceptible to M. incognita, but not as susceptible as Lovell. The response of self-rooted peach cultivars and rootstocks to M. incognita in vitro appears to be a reliable method for predicting the reaction of each to these nematodes under field conditions.  相似文献   

19.
Guardian peach rootstock was evaluated for susceptibility to Meloidogyne incognita race 3 (Georgia-peach isolate) and M. javanica in the greenhouse. Both commercial Guardian seed sources produced plants that were poor hosts of M. incognita and M. javanica. Reproduction as measured by number of egg masses and eggs per plant, eggs per egg mass, and eggs per gram of root were a better measure of host resistance than number of root galls per plant. Penetration, development, and reproduction of M. incognita in Guardian (resistant) and Lovell (susceptible) peach were also studied in the greenhouse. Differences in susceptibility were not attributed to differential penetration by the infectivestage juveniles (J2) or the number of root galls per plant. Results indicated that M. incognita J2 penetrated Guardian roots and formed galls, but that the majority of the nematodes failed to mature and reproduce.  相似文献   

20.
Belonolaimus longicaudatus and Hoplolaimus galeatus are considered among the most damaging pathogens of turfgrasses in Florida. However, the host status of seashore paspalum (Paspalum vaginatum) is unknown. Glasshouse experiments were performed in 2002 and 2003 to determine the tolerance of ''SeaIsle 1'' seashore paspalum to a population of B. longicaudatus and a population of H. galeatus, and to compare to ''Tifdwarf'' bermudagrass for differences. Both nematode species reproduced well on either grass, but only B. longicaudatus consistently reduced root growth as measured by root length. Belonolaimus longicaudatus reduced root growth (P ≤ 0.05) by 35% to 45% at 120 days after inoculation on both grasses. In 2003, higher inoculum levels of H. galeatus reduced root growth (P ≤ 0.05) by 19.4% in seashore paspalum and by 14% in bermudagrass after 60 and 120 days of exposure, respectively. Percentage reductions in root length caused by H. galeatus and B. longicaudatus indicated no differences between grass species, although Tifdwarf bermudagrass supported higher soil population densities of both nematodes than SeaIsle 1 seashore paspalum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号