首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
Cell death from mitochondrial dysfunction and compromised bioenergetics is common after ischemia-reperfusion injury and toxicant exposure. Thus, promoting mitochondrial biogenesis is therapeutically attractive for sustaining oxidative phosphorylation and maintaining ATP-dependent cellular functions. Here, we evaluated increased mitochondrial biogenesis prior to or after oxidant exposure in primary cultures of renal proximal tubular cells (RPTC). Over-expression of the mitochondrial biogenesis regulator PPAR-gamma cofactor-1 alpha (PGC-1alpha) in control RTPC increased basal and uncoupled cellular respiration, ATP, and mitochondria. Increasing mitochondrial number/function prior to oxidant exposure did not preserve mitochondrial function, but potentiated dysfunction and cell death. However, increased mitochondrial biogenesis after oxidant injury accelerated recovery of mitochondrial function. In oxidant treated RPTC, mitochondrial protein expression was reduced by 50%. Also, ATP and cellular respiration decreased 48 h after oxidant exposure, whereas mitochondrial function in injured RPTC over-expressing PGC-1alpha returned to control values. Thus, up-regulation of mitochondrial biogenesis after oxidant exposure accelerates recovery of mitochondrial and cellular functions.  相似文献   

7.
8.
Bioactive compounds reported to stimulate mitochondrial biogenesis are linked to many health benefits such increased longevity, improved energy utilization, and protection from reactive oxygen species. Previously studies have shown that mice and rats fed diets lacking in pyrroloquinoline quinone (PQQ) have reduced mitochondrial content. Therefore, we hypothesized that PQQ can induce mitochondrial biogenesis in mouse hepatocytes. Exposure of mouse Hepa1–6 cells to 10–30 μm PQQ for 24–48 h resulted in increased citrate synthase and cytochrome c oxidase activity, Mitotracker staining, mitochondrial DNA content, and cellular oxygen respiration. The induction of this process occurred through the activation of cAMP response element-binding protein (CREB) and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), a pathway known to regulate mitochondrial biogenesis. PQQ exposure stimulated phosphorylation of CREB at serine 133, activated the promoter of PGC-1α, and increased PGC-1α mRNA and protein expression. PQQ did not stimulate mitochondrial biogenesis after small interfering RNA-mediated reduction in either PGC-1α or CREB expression. Consistent with activation of the PGC-1α pathway, PQQ increased nuclear respiratory factor activation (NRF-1 and NRF-2) and Tfam, TFB1M, and TFB2M mRNA expression. Moreover, PQQ protected cells from mitochondrial inhibition by rotenone, 3-nitropropionic acid, antimycin A, and sodium azide. The ability of PQQ to stimulate mitochondrial biogenesis accounts in part for action of this compound and suggests that PQQ may be beneficial in diseases associated with mitochondrial dysfunction.  相似文献   

9.
10.
11.
Here, we set out to test the novel hypothesis that increased mitochondrial biogenesis in epithelial cancer cells would “fuel” enhanced tumor growth. For this purpose, we generated MDA-MB-231 cells (a triple-negative human breast cancer cell line) overexpressing PGC-1α and MitoNEET, which are established molecules that drive mitochondrial biogenesis and increased mitochondrial oxidative phosphorylation (OXPHOS). Interestingly, both PGC-1α and MitoNEET increased the abundance of OXPHOS protein complexes, conferred autophagy resistance under conditions of starvation and increased tumor growth by up to ~3-fold. However, this increase in tumor growth was independent of neo-angiogenesis, as assessed by immunostaining and quantitation of vessel density using CD31 antibodies. Quantitatively similar increases in tumor growth were also observed by overexpression of PGC-1β and POLRMT in MDA-MB-231 cells, which are also responsible for mediating increased mitochondrial biogenesis. Thus, we propose that increased mitochondrial “power” in epithelial cancer cells oncogenically promotes tumor growth by conferring autophagy resistance. As such, PGC-1α, PGC-1β, mitoNEET and POLRMT should all be considered as tumor promoters or “metabolic oncogenes.” Our results are consistent with numerous previous clinical studies showing that metformin (a weak mitochondrial “poison”) prevents the onset of nearly all types of human cancers in diabetic patients. Therefore, metformin (a complex I inhibitor) and other mitochondrial inhibitors should be developed as novel anticancer therapies, targeting mitochondrial metabolism in cancer cells.  相似文献   

12.
13.
Here, we set out to test the novel hypothesis that increased mitochondrial biogenesis in epithelial cancer cells would “fuel” enhanced tumor growth. For this purpose, we generated MDA-MB-231 cells (a triple-negative human breast cancer cell line) overexpressing PGC-1α and MitoNEET, which are established molecules that drive mitochondrial biogenesis and increased mitochondrial oxidative phosphorylation (OXPHOS). Interestingly, both PGC-1α and MitoNEET increased the abundance of OXPHOS protein complexes, conferred autophagy resistance under conditions of starvation and increased tumor growth by up to ~3-fold. However, this increase in tumor growth was independent of neo-angiogenesis, as assessed by immunostaining and quantitation of vessel density using CD31 antibodies. Quantitatively similar increases in tumor growth were also observed by overexpression of PGC-1β and POLRMT in MDA-MB-231 cells, which are also responsible for mediating increased mitochondrial biogenesis. Thus, we propose that increased mitochondrial “power” in epithelial cancer cells oncogenically promotes tumor growth by conferring autophagy resistance. As such, PGC-1α, PGC-1β, mitoNEET and POLRMT should all be considered as tumor promoters or “metabolic oncogenes.” Our results are consistent with numerous previous clinical studies showing that metformin (a weak mitochondrial “poison”) prevents the onset of nearly all types of human cancers in diabetic patients. Therefore, metformin (a complex I inhibitor) and other mitochondrial inhibitors should be developed as novel anticancer therapies, targeting mitochondrial metabolism in cancer cells.  相似文献   

14.
Mitochondrial dysfunction is a common consequence of ischemia-reperfusion and drug injuries. For example, sublethal injury of renal proximal tubular cells (RPTCs) with the model oxidant tert-butylhydroperoxide (TBHP) causes mitochondrial injury that recovers over the course of six days. Although regeneration of mitochondrial function is integral to cell repair and function, the signaling pathway of mitochondrial biogenesis following oxidant injury has not been examined. A 10-fold overexpression of the mitochondrial biogenesis regulator PPAR-gamma cofactor-1alpha (PGC-1alpha) in control RPTCs resulted in a 52% increase in mitochondrial number, a 27% increase in respiratory capacity, and a 30% increase in mitochondrial protein markers, demonstrating that PGC-1alpha mediates mitochondrial biogenesis in RPTCs. RPTCs sublethally injured with TBHP exhibited a 50% decrease in mitochondrial function and increased mitochondrial autophagy. Compared with the controls, PGC-1alpha levels increased 12-fold on days 1, 2, and 3 post-injury and returned to base line on day 4 as mitochondrial function returned. Inhibition p38 MAPK blocked the up-regulation of PGC-1alpha following oxidant injury, whereas inhibition of calcium-calmodulin-dependent protein kinase, calcineurin A, nitric-oxide synthase, and phosphoinositol 3-kinase had no effect. The epidermal growth factor receptor (EGFR) was activated following TBHP exposure, and the EGFR inhibitor AG1478 blocked the up-regulation of PGC-1alpha. Additional inhibitor studies revealed that the sequential activation of Src, p38 MAPK, EGFR, and p38 MAPK regulate the expression of PGC-1alpha following oxidant injury. In contrast, although Akt was activated following oxidant injury, it did not play a role in PGC-1alpha expression. We suggest that mitochondrial biogenesis following oxidant injury is mediated by p38 and EGFR activation of PGC-1alpha.  相似文献   

15.
Although it has been reported that thiazolidinediones (TZDs) may reduce cardiovascular events in type 2 diabetic patients, its precise mechanism is unclear. We previously demonstrated that hyperglycemia-induced production of reactive oxygen species from mitochondria (mtROS) contributed to the development of diabetic complications, and metformin normalized mt ROS production by induction of MnSOD and promotion of mitochondrial biogenesis by activating the PGC-1α pathway. In this study, we examined whether TZDs could inhibit hyperglycemia-induced mtROS production by activating the PGC-1α pathway. We revealed that pioglitazone and ciglitazone attenuated hyperglycemia-induced ROS production in human umbilical vein endothelial cells (HUVECs). Both TZDs increased the expression of NRF-1, TFAM and MnSOD mRNA. Moreover, pioglitazone increased mtDNA and mitochondrial density. These results suggest that TZDs normalize hyperglycemia-induced mtROS production by induction of MnSOD and promotion of mitochondrial biogenesis by activating PGC-1α. This phenomenon could contribute to the prevention of diabetic vascular complications.  相似文献   

16.
17.
Mitochondria play an essential role in the ability of brown fat to generate heat, and the PGC-1 coactivators control several aspects of mitochondrial biogenesis. To investigate their specific roles in brown fat cells, we generated immortal preadipocyte lines from the brown adipose tissue of mice lacking PGC-1alpha. We could then efficiently knockdown PGC-1beta expression by shRNA expression. Loss of PGC-1alpha did not alter brown fat differentiation but severely reduced the induction of thermogenic genes. Cells deficient in either PGC-1alpha or PGC-1beta coactivators showed a small decrease in the differentiation-dependant program of mitochondrial biogenesis and respiration; however, this increase in mitochondrial number and function was totally abolished during brown fat differentiation when both PGC-1alpha and PGC-1beta were deficient. These data show that PGC-1alpha is essential for brown fat thermogenesis but not brown fat differentiation, and the PGC-1 coactivators play an absolutely essential but complementary function in differentiation-induced mitochondrial biogenesis.  相似文献   

18.
19.
20.
《Free radical research》2013,47(8):935-945
Abstract

Oxidative stress and mitochondrial dysfunction are hypothesized to contribute to the pathogenesis of chronic cholestatic liver diseases. Silent information regulator 1 (SIRT1) attenuates oxidative stress and improves mitochondrial biogenesis in numerous mitochondrial-related diseases; however, a functional role for SIRT1 in chronic liver cholestasis, characterized by increased levels of toxic bile acids, remains unknown. We show decrease in SIRT1 levels and its activity and impairment of mitochondrial biogenesis in the liver of patients with extrahepatic cholestasis. Moreover, we found that glycochenodeoxycholic acid (GCDCA) stimulated cytotoxicity, disrupted the mitochondrial membrane potential, increased reactive oxygen species production, and decreased mitochondrial mass and mitochondrial DNA content in L02 cells. Consistent with this finding, GCDCA was found to decrease SIRT1 protein expression and activity, thus promoting the deacetylation of peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PGC-1α), a key enzyme involved in mitochondrial biogenesis and function. Conversely, GCDCA-induced mitochondrial injury was efficiently attenuated by SIRT1 overexpression. In summary, these findings indicate that the loss of SIRT1 may play a crucial role in the pathogenesis of liver damage observed in patients with extrahepatic cholestasis. The findings also indicate that genetic supplementation of SIRT1 can ameliorate GCDCA-induced hepatotoxicity through the activation of PGC-1α-dependent mitochondrial biogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号