首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rodent incisors are covered by enamel only on their labial side. This asymmetric distribution of enamel is instrumental to making the cutting edge sharp. Enamel matrix is secreted by ameloblasts derived from dental epithelium. Here we show that overexpression of follistatin in the dental epithelium inhibits ameloblast differentiation in transgenic mouse incisors, whereas in follistatin knockout mice, ameloblasts differentiate ectopically on the lingual enamel-free surface. Consistent with this, in wild-type mice, follistatin was continuously expressed in the lingual dental epithelium but downregulated in the labial epithelium. Experiments on cultured tooth explants indicated that follistatin inhibits the ameloblast-inducing activity of BMP4 from the underlying mesenchymal odontoblasts and that follistatin expression is induced by activin from the surrounding dental follicle. Hence, ameloblast differentiation is regulated by antagonistic actions of BMP4 and activin A from two mesenchymal cell layers flanking the dental epithelium, and asymmetrically expressed follistatin regulates the labial-lingual patterning of enamel formation.  相似文献   

2.
3.
Previous studies have suggested that mouse molar ameloblast differentiation was triggered by the predentin-dentin. Knowing that enamel is absent on the lingual surface of the mouse incisor, the aim of this study was to compare in heterotopic tissue recombinations the behavior of mouse molar inner dental epithelium associated with lingual or labial mouse incisor dentin. It was shown that root-analogue and crown-analogue incisor dentin promotes ameloblast differentiation of competent molar inner dental epithelium.  相似文献   

4.
5.
6.
Epithelial stem cells reside in specific niches that regulate their self-renewal and differentiation, and are responsible for the continuous regeneration of tissues such as hair, skin, and gut. Although the regenerative potential of mammalian teeth is limited, mouse incisors grow continuously throughout life and contain stem cells at their proximal ends in the cervical loops. In the labial cervical loop, the epithelial stem cells proliferate and migrate along the labial surface, differentiating into enamel-forming ameloblasts. In contrast, the lingual cervical loop contains fewer proliferating stem cells, and the lingual incisor surface lacks ameloblasts and enamel. Here we have used a combination of mouse mutant analyses, organ culture experiments, and expression studies to identify the key signaling molecules that regulate stem cell proliferation in the rodent incisor stem cell niche, and to elucidate their role in the generation of the intrinsic asymmetry of the incisors. We show that epithelial stem cell proliferation in the cervical loops is controlled by an integrated gene regulatory network consisting of Activin, bone morphogenetic protein (BMP), fibroblast growth factor (FGF), and Follistatin within the incisor stem cell niche. Mesenchymal FGF3 stimulates epithelial stem cell proliferation, and BMP4 represses Fgf3 expression. In turn, Activin, which is strongly expressed in labial mesenchyme, inhibits the repressive effect of BMP4 and restricts Fgf3 expression to labial dental mesenchyme, resulting in increased stem cell proliferation and a large, labial stem cell niche. Follistatin limits the number of lingual stem cells, further contributing to the characteristic asymmetry of mouse incisors, and on the basis of our findings, we suggest a model in which Follistatin antagonizes the activity of Activin. These results show how the spatially restricted and balanced effects of specific components of a signaling network can regulate stem cell proliferation in the niche and account for asymmetric organogenesis. Subtle variations in this or related regulatory networks may explain the different regenerative capacities of various organs and animal species.  相似文献   

7.
Understanding the cellular and molecular mechanisms that underlie tooth regeneration and renewal has become a topic of great interest1-4, and the mouse incisor provides a model for these processes. This remarkable organ grows continuously throughout the animal''s life and generates all the necessary cell types from active pools of adult stem cells housed in the labial (toward the lip) and lingual (toward the tongue) cervical loop (CL) regions. Only the dental stem cells from the labial CL give rise to ameloblasts that generate enamel, the outer covering of teeth, on the labial surface. This asymmetric enamel formation allows abrasion at the incisor tip, and progenitors and stem cells in the proximal incisor ensure that the dental tissues are constantly replenished. The ability to isolate and grow these progenitor or stem cells in vitro allows their expansion and opens doors to numerous experiments not achievable in vivo, such as high throughput testing of potential stem cell regulatory factors. Here, we describe and demonstrate a reliable and consistent method to culture cells from the labial CL of the mouse incisor.  相似文献   

8.
9.
10.
11.
12.
13.
In several primate groups enamel is reduced or absent from the lingual (tongue) side of the mandibular incisor crowns akin to other placental and marsupial mammalian groups such as rodents, lagomorphs and wombats. Here we investigate the presumed adaptation of crowns with unilateral enamel to the incision of tough foods in cercopithecines, an Old World monkey subfamily, using a simulation approach. We developed and validated a finite element model of the lower central incisor of the rhesus macaque (Macaca mulatta) with labial enamel only to compute three-dimensional displacements and maximum principal stresses on the crown subjected to compressive loads varying in orientation. Moreover, we developed a model of a macaque incisor with enamel present on both labial and lingual aspects, thus resembling the ancestral condition found in the sister taxon, the leaf-eating colobines. The results showed that, concomitant with experimental results, the cercopithecine crown with unilateral enamel bends predominantly towards the inside of the mouth, while displacements decreased when both labial and lingual enamel are present. Importantly, the cercopithecine incisor crown experienced lower maximum principal stress on the lingual side compared to the incisor with enamel on the lingual and labial aspects under non-axial loads directed either towards the inside or outside of the mouth. These findings suggest that cercopithecine mandibular incisors are adapted to a wide range of ingestive behaviours compared to colobines. We conclude that the evolutionary loss of lingual enamel in cercopithecines has conferred a safeguard against crown failure under a loading regime assumed for the ingestion (peeling, scraping) of tough-skinned fruits.  相似文献   

14.
Rodent incisors regenerate throughout the lifetime of the animal owing to the presence of epithelial and mesenchymal stem cells in the proximal region of the tooth. Enamel, the hardest component of the tooth, is continuously deposited by stem cell-derived ameloblasts exclusively on the labial, or outer, surface of the tooth. The epithelial stem cells that are the ameloblast progenitors reside in structures called cervical loops at the base of the incisors. Previous studies have suggested that FGF10, acting mainly through fibroblast growth factor receptor 2b (FGFR2b), is crucial for development of the epithelial stem cell population in mouse incisors. To explore the role of FGFR2b signaling during development and adult life, we used an rtTA transactivator/tetracycline promoter approach that allows inducible and reversible attenuation of FGFR2b signaling. Downregulation of FGFR2b signaling during embryonic stages led to abnormal development of the labial cervical loop and of the inner enamel epithelial layer. In addition, postnatal attenuation of signaling resulted in impaired incisor growth, characterized by failure of enamel formation and degradation of the incisors. At a cellular level, these changes were accompanied by decreased proliferation of the transit-amplifying cells that are progenitors of the ameloblasts. Upon release of the signaling blockade, the incisors resumed growth and reformed an enamel layer, demonstrating that survival of the stem cells was not compromised by transient postnatal attenuation of FGFR2b signaling. Taken together, our results demonstrate that FGFR2b signaling regulates both the establishment of the incisor stem cell niches in the embryo and the regenerative capacity of incisors in the adult.  相似文献   

15.
Pitx2, Wnt/β-catenin signaling, and microRNAs (miRs) play a critical role in the regulation of dental stem cells during embryonic development. In this report, we have identified a Pitx2:β-catenin regulatory pathway involved in epithelial cell differentiation and conversion of mesenchymal cells to amelogenin expressing epithelial cells via miR-200a. Pitx2 and β-catenin are expressed in the labial incisor cervical loop or epithelial stem cell niche, with decreased expression in the differentiating ameloblast cells of the mouse lower incisor. Bioinformatics analyses reveal that miR-200a-3p expression is activated in the pre-ameloblast cells to enhance epithelial cell differentiation. We demonstrate that Pitx2 activates miR-200a-3p expression and miR-200a-3p reciprocally represses Pitx2 and β-catenin expression. Pitx2 and β-catenin interact to synergistically activate gene expression during odontogenesis and miR-200a-3p attenuates their expression and directs differentiation. To understand how this mechanism controls cell differentiation and cell fate, oral epithelial and odontoblast mesenchymal cells were reprogrammed by a two-step induction method using Pitx2 and miR-200a-3p. Conversion to amelogenin expressing dental epithelial cells involved an up-regulation of the stem cell marker Sox2 and proliferation genes and decreased expression of mesenchymal markers. E-cadherin expression was increased as well as ameloblast specific factors. The combination of Pitx2, a regulator of dental stem cells and miR-200a converts mesenchymal cells to a fully differentiated dental epithelial cell type. This pathway and reprogramming can be used to reprogram mesenchymal or oral epithelial cells to dental epithelial (ameloblast) cells, which can be used in tissue repair and regeneration studies.  相似文献   

16.
Teeth form as appendages of the ectoderm and their morphogenesis is regulated by tissue interactions mediated by networks of conserved signal pathways. Micro-RNA (miRNA) pathway has emerged as important regulator of various aspects of embryonic development, but its function in odontogenesis has not been elucidated. We show that the expression of RNAi pathway effectors is dynamic during tooth morphogenesis and differentiation of dental cells. Based on microarray profiling we selected 8 miRNAs expressed during morphogenesis and 7 miRNAs in the incisor cervical loop containing the stem cell niche. These miRNAs were mainly expressed in the dental epithelium. Conditional deletion of Dicer-1 in the epithelium (DcrK14/) resulted in rather mild but significant aberrations in tooth shape and enamel formation. The cusp patterns of the DcrK14/ molar crowns resembled the patterns of both ancestral muroid rodents and mouse mutants with modulated signal pathways. In the DcrK14/ incisors, longitudinal grooves formed on the labial surface and these were shown to result from ectopic budding of the progenitor epithelium in the cervical loop. In addition, ameloblast differentiation was impaired and resulted in deficient enamel formation in molars and incisors. To help the identification of candidate target genes of the selected tooth enriched miRNAs, we constructed a new ectodermal organ oriented database, miRTooth. The predicted targets of the selected miRNAs included several components of the main morphogenetic signal pathways regulating tooth development. Based on our findings we suggest that miRNAs modulate tooth morphogenesis largely by fine tuning conserved signaling networks and that miRNAs may have played important roles during tooth evolution.  相似文献   

17.
A major theme in understanding epithelial-mesenchymal interactions during development focuses upon regional mesenchyme specification of epithelial differentiation. One particularly useful epidermal organ system for studying this issue is the rodent continuously growing and erupting incisor tooth organ. One advantage of this particular system resides in the regional features of the rodent incisor tooth organ. Along the labial surface, inner dental epithelial cells differentiate into ameloblasts that produce enamel extracellular matrix, whereas the epithelia along the lingual surface do not become ameloblasts and do not produce enamel matrix. This study has been designed to compare ultrastructural features of labial versus lingual surfaces, with particular emphasis upon mesenchymal cell shape, the orientation of extracellular matrix collagen, the basal lamina, and the distribution of sulfated glycoconjugates. Critical analyses of the data indicated that different microenvironments exist between epithelia and mesenchyme in the labial versus the lingual surfaces of the developing rodent incisor tooth organ.  相似文献   

18.
A three dimensional reconstruction of the epithelial tissue at the apical end of the lower rat incisor was made from serial 1 mum thick cross sections. This tissue formed an elongated structure, called the odontogenic organ, which was composed of a bulbous and a "U"-shaped part. Both parts were joined to one another at the posterior aspect of the apical foramen. The bulbous part of the odontogenic organ was situated at the lingual side of the "U"-shaped part and protruded anteriorly over the pulp. It was formed by cells of the outer dental epithelium and stellate reticulum whose organization suggested that the bulbous part was important in the production of cells for renewal of all the epithelia of the incisor. The "U"-shaped part of the odontogenic organ was apparently derived from the bulbous part and delineated the pulp by forming the lateral, mesial and labial sidewalls around the apical foramen. It was composed of all the epithelial cell types recognizable as precursors to (a) cells of the enamel organ which form the enamel, and (b) Hertwig's epithelial root sheath, a part of the odontogenic organ which induces the formation of dentin on the lingual aspect of the incisor.  相似文献   

19.
Longitudinal ground sections of 29 Old World monkey central lower incisors were studied histologically and metrically. Labiolingual incisor width tended to scale isometrically with body weight but with important deviations in relative incisor size, which appeared to be correlated with diet in accord with work by Hylander. Lower incisors of the predominantly folivorous colobine monkeys had a substantial layer of enamel on both lingual and labial aspects and consequently had blunt incisal edges. These teeth in both cercopithecins and papionins, which are omnivorous or frugivorous, had little or no enamel on the lingual aspect, resulting in sharp incisal edges. It is suggested that colobine incisors are used mainly in gripping and tearing leaves, whereas cercopithecine incisors are better adapted to cutting and scraping. Crown height showed a positive allometric relationship with overall incisor height, so that the tall incisors of papionins, especially Papio and Mandrillus, were more hypsodont than the shorter incisors of colobines and cercopithecins. This appears to be related to differences in the rates of incisor wear between the groups.  相似文献   

20.
FGF10 maintains stem cell compartment in developing mouse incisors   总被引:27,自引:0,他引:27  
Mouse incisors are regenerative tissues that grow continuously throughout life. The renewal of dental epithelium-producing enamel matrix and/or induction of dentin formation by mesenchymal cells is performed by stem cells that reside in cervical loop of the incisor apex. However, little is known about the mechanisms of stem cell compartment formation. Recently, a mouse incisor was used as a model to show that fibroblast growth factor (FGF) 10 regulates mitogenesis and fate decision of adult stem cells. To further illustrate the role of FGF10 in the formation of the stem cell compartment during tooth organogenesis, we have analyzed incisor development in Fgf10-deficient mice and have examined the effects of neutralizing anti-FGF10 antibody on the developing incisors in organ cultures. The incisor germs of FGF10-null mice proceeded to cap stage normally. However, at a later stage, the cervical loop was not formed. We found that the absence of the cervical loop was due to a divergence in Fgf10 and Fgf3 expression patterns at E16. Furthermore, we estimated the growth of dental epithelium from incisor explants of FGF10-null mice by organ culture. The dental epithelium of FGF10-null mice showed limited growth, although the epithelium of wild-type mice appeared to grow normally. In other experiments, a functional disorder of FGF10, caused by a neutralizing anti-FGF10 antibody, induced apoptosis in the cervical loop of developing mouse incisor cultures. However, recombinant human FGF10 protein rescued the cervical loop from apoptosis. Taken together, these results suggest that FGF10 is a survival factor that maintains the stem cell population in developing incisor germs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号