首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
In recent years there has been a great effort to convert the existing Air Traffic Control system into a novel system known as Free Flight. Free Flight is based on the concept that increasing international airspace capacity will grant more freedom to individual pilots during the enroute flight phase, thereby giving them the opportunity to alter flight paths in real time. Under the current system, pilots must request, then receive permission from air traffic controllers to alter flight paths. Understandably the new system allows pilots to gain the upper hand in air traffic. At the same time, however, this freedom increase pilot responsibility. Pilots face a new challenge in avoiding the traffic shares congested air space. In order to ensure safety, an accurate system, able to predict and prevent conflict among aircraft is essential. There are certain flight maneuvers that exist in order to prevent flight disturbances or collision and these are graded in the following categories: vertical, lateral and airspeed. This work focuses on airspeed maneuvers and tries to introduce a new idea for the control of Free Flight, in three dimensions, using neural networks trained with examples prepared through non-linear programming.  相似文献   

2.
Bird species often use flight calls to engage in social behavior, for instance maintain group cohesion and to signal individual identity, kin or social associations, or breeding status of the caller. Additional uses also exist, in particular among migrating songbirds for communication during nocturnal migration. However, our understanding of the information that these vocalizations convey is incomplete, especially in nocturnal scenarios. To examine whether information about signaler traits could be encoded in flight calls we quantified several acoustic characteristics from calls of a nocturnally migrating songbird, the American Redstart. We recorded calls from temporarily captured wild specimens during mist-netting at the Powdermill Avian Research Center in Rector, PA. We measured call similarity among and within individuals, genders, and age groups. Calls from the same individual were significantly more similar to one another than to the calls of other individuals, and calls were significantly more similar among individuals of the same sex than between sexes. Flight calls from hatching-year and after hatching-year individuals were not significantly different. Our results suggest that American Redstart flight calls may carry identifiers of gender and individual identity. To our knowledge, this is the first evidence of individuality or sexual dimorphism in the flight calls of a migratory songbird. Furthermore, our results suggest that flight calls may have more explicit functions beyond simple group contact and cohesion. Nocturnal migration may require coordination among numerous individuals, and the use of flight calls to transmit information among intra- and conspecifics could be advantageous. Applying approaches that account for such individual and gender information may enable more advanced research using acoustic monitoring.  相似文献   

3.
Effects of age, sex, presence or absence of food, mating status, quantity of food, and food deprivation on rate of and time of flight initiation of the red flour beetle, Tribolium castaneum (Herbst), were determined. Flight initiation declined with increasing age in both presence and absence of food. However, flight initiation was lower when food was present in the flight chambers than in the absence of food. In the presence of food, both mated and virgin beetles were equally likely to disperse by flight. However, in the absence of food, mated beetles initiated flight more readily that virgin individuals. Flight initiation was greatest when little or no food was present. The presence of varying quantities of food inside the flight chambers impacted the number of progeny produced by females before flight, but not the timing of flight. Rate of flight initiation was higher for beetles deprived of food for short periods of time compared with flight initiation of beetles with food in the flight chamber. Flight initiation decreased with increasing time without food. There were no differences in flight tendencies between males and females in the experiments reported here. Our results suggest that T. castaneum uses flight as a mechanism to disperse to new environments during almost any part of their life span and that this type of dispersion does not fit with the model of the so-called true migratory species that involves an "oogenesis-flight syndrome.  相似文献   

4.
【目的】本研究旨在阐明二点委夜蛾的飞行行为特征,丰富二点委夜蛾飞行生物学理论,提高其预测预报水平。【方法】利用昆虫飞行磨被动吊飞系统和主动飞行监测系统,系统研究了二点委夜蛾Athdtis lepigone(M(o|¨)schler)被动飞行能力和主动飞行意愿。【结果】成虫具有较强的被动飞行潜力。室内连续吊飞80 h,雌雄蛾最远飞行距离分别达106.71 km和148.32 km,最长飞行时间分别达43.05 h和40.01h,最快飞行速度分别达7.60 km/h和8.14 km/h。雄蛾飞行潜力显著强于雌蛾,体现在飞行距离和飞行时间显著高于雌蛾,但飞行速度差异不显著。成虫蛾龄显著影响成虫飞行能力。对不同蛾龄成虫吊飞12 h的结果表明,1日龄即具备一定的飞行能力,之后逐渐增强,3日龄时飞行能力最强,雌雄蛾平均飞行距离分别为29.61 km和27.55 km,飞行时间分别为10.04 h和9.46 h,平均飞行速度分别达2.76 kn/h和2.46km/h,4日龄成虫飞行能力开始下降,但不同性别间成虫飞行能力差异不显著。蛾龄间飞行能力差异主要是由于不同蛾龄成虫的强、弱飞行个体比例不同。二点委夜蛾主动飞行呈现明显的节律行为,飞行活动主要集中在暗期(19:00—次日5:00),在光期(5:00—19:00)基本不飞行。成虫初羽化(1日龄)主动飞行意愿增强,之后飞行活动减少,但产卵开始时主动飞行活动又开始增强,到7日龄达到峰值。【结论】二点委夜蛾成虫具有较强的飞行能力,其飞行能力受蛾龄,雌雄等因素影响;飞行具有明显的节律性。  相似文献   

5.
The development of the mechanical and aerodynamical theory of bird flight has greatly stimulated research at widely different levels in the field of bird movement. Recent work has shown that the drag of bird bodies is less than was previously assumed. Furthermore, the structure and circulation of wingtip vortices in the wake of flying birds have been revealed, with implications for estimating flight performance on the basis of vortex theory. Predictions about optimal speed and flight behaviour have been successfully tested by field studies using optical and radar registration. Flight theory also allows predictions about optimal fuel deposition rules for migrating birds. Research about bird flight, with the dynamic interplay between theoretical development and empirical work in biophysics, physiology and ecology, represents a fine example of a highly successful use of the optimality approach in biology.  相似文献   

6.
Flight initiation distance describes the distance at which an animal flees during the approach of a predator. This distance presumably reflects the tradeoff between the benefits of fleeing versus the benefits of remaining stationary. Throughout ontogeny, the costs and benefits of flight may change substantially due to growth-related changes in sprint speed; thus ontogenetic variation in flight initiation distance may be substantial. If escape velocity is essential for surviving predator encounters, then juveniles should either tolerate short flight initiation distances and rely on crypsis, or should have high flight initiation distances to remain far away from their predators. We examined this hypothesis in a small, short-lived lizard (Sceloporus woodi). Flight initiation distance and escape velocity were recorded on an ontogenetic series of lizards in the field. Maximal running velocity was also quantified in a laboratory raceway to establish if escape velocities in the field compared with maximal velocities as measured in the lab. Finally a subset of individuals was used to quantify how muscle and limb size scale with body size throughout ontogeny. Flight initiation distance increased with body size; larger animals had higher flight initiation distances. Small lizards had short flight initiation distances and remained immobile longer, thus relying on crypsis for concealment. Escape velocity in the field did not vary with body size, yet maximum velocity in the lab did increase with size. Hind limb morphology scaled isometrically with body size. Isometric scaling of the hind limb elements and its musculature, coupled with similarities in sprint and escape velocity across ontogeny, demonstrate that smaller S. woodi must rely on crypsis to avoid predator encounters, whereas adults alter their behavior via larger flight initiation distance and lower (presumably less expensive) escape velocities.  相似文献   

7.
Pear psylla, Cacopsylla pyricola Förster (Homoptera: Psyllidae), was flown in the laboratory to test hypotheses suggested by field observations. Flight durations of the same insects flown on two different days were highly correlated, suggesting that there were biolgical differences among insects in flight tendencies. Flight durations were similar between summerform and winterform morphotypes. Flight frequencies and durations increased between September and November collections of winterforms, results that are consistent with field observations. Long-duration (60+ min) flights were three to four times as frequent in winterforms restricted to senescing pear foliage compared to insects provided access to pear seedlings. Winterforms collected during the fall flight period from a pear orchard and an adjacent apple orchard (an overwintering habitat) showed similar flight durations. There was no correlation between flight durations and any of five body and wing measurements; body size of winterforms increased between September and November. It has been proposed elsewhere that much of the fall movement into adjacent non-pear habitats by winterforms is due to short duration non-migratory flights rather than to a true migratory flight. The lack of differences between apple- and pear-collected winterforms may be consistent with this hypothesis.  相似文献   

8.
Migration by flight is an important component of the life cycles of most insects. The probability that a given insect will migrate by flight is influenced by many factors, most notably the presence or absence of fully-developed wings and functional flight musculature. Considerable variation has also been reported in the flight propensity of fully-winged individuals with functional flight musculature. We test the hypothesis that these components of migratory tendency are genetically correlated in a wing-dimorhic cricket, Gryllus firmus. Flight propensity and condition of the dorsal longitudinal flight muscles (DLM) are examined in fully-winged (LW) crickets from lines selected for increasing and for decreasing %LW, as well as from unselected control lines. Increased %LW is found to be associated with increased flight propensity among individuals with intact DLM, and with retention of functional DLM. The opposite is true for lines selected for decreased %LW. These results indicate both phenotypic and genetic correlations among behavioral, physiological, and morphological traits determining migratory tendency. We propose that these correlations may result from the multifunctional role of juvenile hormone, which has been reported to influence wing development, flight muscle development and degeneration, and flight propensity. Finally, we discuss the potential influence of genetic correlations for migratory traits on the evolution and maintenance of migratory polymorphisms in insects.  相似文献   

9.
Flight in insects can be long-range migratory flights, intermediate-range dispersal flights, or short-range host-seeking flights. Previous studies have shown that flight mills are valuable tools for the experimental study of insect flight behavior, allowing researchers to examine how factors such as age, host plants, or population source can influence an insects'' propensity to disperse. Flight mills allow researchers to measure components of flight such as speed and distance flown. Lack of detailed information about how to build such a device can make their construction appear to be prohibitively complex. We present a simple and relatively inexpensive flight mill for the study of tethered flight in insects. Experimental insects can be tethered with non-toxic adhesives and revolve around an axis by means of a very low friction magnetic bearing. The mill is designed for the study of flight in controlled conditions as it can be used inside an incubator or environmental chamber. The strongest points are the very simple electronic circuitry, the design that allows sixteen insects to fly simultaneously allowing the collection and analysis of a large number of samples in a short time and the potential to use the device in a very limited workspace. This design is extremely flexible, and we have adjusted the mill to accommodate different species of insects of various sizes.  相似文献   

10.
Flight muscle breakdown has been reported for many orders of insects, but the basis of this breakdown in insects with lifelong dependence on flight is less clear. Lepidopterans show such muscle changes across their lifespans, yet how this change affects the ability of these insects to complete their life cycles is not well documented. We investigated the changes in muscle function and ultrastructure of unfed aging adult hawk moths (Manduca sexta). Flight duration was examined in young, middle-aged, and advanced-aged unfed moths. After measurement of flight duration, the main flight muscle (dorsolongitudinal muscle) was collected and histologically prepared for transmission electron microscopy to compare several measurements of muscle ultrastructure among moths of different ages. Muscle function assays revealed significant positive correlations between muscle ultrastructure and flight distance that were greatest in middle-aged moths and least in young moths. In addition, changes in flight muscle ultrastructure were detected across treatment groups. The number of mitochondria in muscle cells peaked in middle-aged moths. Many wild M. sexta do not feed as adults; thus, understanding the changes in flight capacity and muscle ultrastructure in unfed moths provides a more complete understanding of the ecophysiology and resource allocation strategies of this species.  相似文献   

11.
The start of flight of mature adult dragonflies (Aeshna spp.) was investigated using electrophysiological and photographic techniques already described. Flight begins with either an upwards or a downwards movement of the wings. Neuromuscular activity and wing vibrations resembling ‘warm-up’ in moths is reported in two species of Aeshna.  相似文献   

12.
The Asian Long‐horned Beetle (ALB) is a highly polyphagous species invasive in North America and Europe. This species has been reported to have low dispersing potential, but long‐distance dispersal could occasionally happen. We conducted a preliminary study on laboratory‐reared adults from invasive populations to measure the flying potential of beetles using computer‐linked flight mills. Under standardized conditions, ALB was capable of flying over longer distances than previously described. The highest distance recorded over an adult lifespan outreached 14 km. Flight mill method is therefore useful to estimate the maximum physiological flight abilities of the species that should be taken into account to improve management of invasive populations.  相似文献   

13.
We have studied the nocturnal flight behaviour of the common swift (Apus apus L.), by the use of a tracking radar. Birds were tracked from Lund University in southern Sweden during spring migration, summer roosting flights and autumn migration. Flight speeds were compared with predictions from flight mechanical and optimal migration theories. During spring, flight speeds were predicted to be higher than during both summer and autumn due to time restriction. In such cases, birds fly at a flight speed that maximizes the overall speed of migration. For summer roosting flights, speeds were predicted to be lower than during both spring and autumn since the predicted flight speed is the minimum power speed that involves the lowest energy consumption per unit time. During autumn, we expected flight speeds to be higher than during summer but lower than during spring since the expected flight speed is the maximum range speed, which involves the lowest energy consumption per unit distance. Flight speeds during spring were indeed higher than during both summer and autumn, which indicates time-selected spring migration. Speeds during autumn migration were very similar to those recorded during summer roosting flights. The general result shows that swifts change their flight speed between different flight behaviours to a smaller extent than expected. Furthermore, the difference between flight speeds during migration and roosting among swifts was found to be less pronounced than previously recorded.  相似文献   

14.
The lacewing Chrysoperla sinica (Tjeder) (Neuroptera: Chrysopidae) is an important predator of several insect pests in China and has considerable potential as a biological control agent. An inoculative approach would be the releasing adults early in the season to ensure that populations are present before pest densities increase. However, an understanding of adult flight activity under different conditions is necessary to develop appropriate release strategies. Therefore, we used a 32-channel, computer-monitored flight mill system to determine the effect of age on the flight activity of unmated female and male adults. Both sexes had high total flight activity levels as well as the longest individual flight bouts 2 and 3 d after emergence. The effects of temperature (between 13 and 33 degrees C at 75% RH) and relative humidity (between 30 and 90% RH at 23 degrees C) on the flight activity of 3-d-old unmated adults also were determined. Flight activity declined at the lowest (13 degrees C) and highest (33 degrees C) temperatures tested, as well as at the lowest relative humidity (30% RH). These findings are discussed within the context of selecting the appropriate environmental conditions for releasing C. sinica.  相似文献   

15.
Flight initiation of the New Zealand wheat bug, Nysius huttoni White, in relation to temperature and wing forms was studied in the field over a period of 4 years. The results indicated that temperature is a major factor affecting flight initiation of this species. When air temperature rose to 27 °C, and/or the ground temperature reached 40 °C, flights occurred. These two temperatures are determined as thresholds for flight initiation. Flights were short, low and hop-like, covering up to five metres. Flight behaviour is displayed by a portion of individuals of a population in response to high temperature, suggesting that other factors are involved. Flight can occur in adults of any generation except overwintered generation depending on ambient temperature, but mainly in those of second and third generations. Daytime flight is common, peaking especially around midday with high temperatures. Macropterous and sub-brachypterous forms are capable of flight, whereas the brachypterous form is apparently flightless. Both sexes of flying adults have the same temperature thresholds for flight.  相似文献   

16.
Previous studies have shown that the changes seen in the bones of growing rats exposed to microgravity are due in part to changes that occur in the growth plate during spaceflight. In this study, growth plates of rats flown aboard Cosmos 1887 (12.5-day flight plus 53.5-h recovery at 1 g) were analyzed using light and electron microscopy and computerized planimetry. The proliferative zone of flight animals was found to be significantly (P less than or equal to 0.01) larger than that of controls, while the reserve and hypertrophic/calcification zones were significantly reduced. Flight animals also had more cells per column in the proliferative zone than did controls and less in the hypertrophic/calcification region. The total number of cells, however, was significantly greater in flight animals. No difference was found in perimeter or in shape factor, but area was significantly less in flight animals. Electron microscopy showed that collagen fibrils in flight animals were wider than in controls. Since the time required for a cell to cycle through the growth plate is 2-3 days at 1 g, the results reported here represent both the effects of exposure to microgravity and the initial stages of recovery from that exposure.  相似文献   

17.
温度对甜菜夜蛾飞行能力的影响   总被引:5,自引:0,他引:5  
温度对甜菜夜蛾飞行能力有显著的影响(P<0.05)。在16~32℃内,成虫均能进行正常的飞行活动。24℃下的成虫飞行能力最强,在15 h的吊飞飞行中,成虫飞行距离最远(37.14 km)、飞行速度最快(0.87 m/s)、飞行时间最长(11.73 h)。温度低于20℃或高于28℃时,其飞行能力均显著降低。甜菜夜蛾在不同温度下飞行时对主要能源物质(甘油三酯)的利用效率不同。在较适宜的温度下,尽管成虫飞行消耗的甘油三酯较多,但单位飞行距离所消耗的甘油三酯却较少,即利用效率较高,表明成虫飞行能源物质利用效率的不同是导致其在不同温度下飞行能力产生差异的主要原因之一。  相似文献   

18.
Although being an important conservation tool in Africa, trophy hunting is known to influence risk perception in wildlife species, thus affecting the behaviour and fitness of most targeted species. We studied the effects of trophy hunting on the flight behaviour of impala (Aepyceros melampus), greater kudu (Tragelaphus strepsiceros) and sable (Hippotragus niger) in two closed ecosystems, Cawston Ranch (hunting area) and Stanley and Livingstone Private Game Reserve (tourist area), western Zimbabwe. Using standardized field procedures, we assessed the flight behavioural responses of the three species in two seasons: non‐hunting (December–March) and hunting (April–November) between March 2013 and November 2014. We tested the effect of habitat, group size, sex, season, start distance and alert distance on flight initiation distance using linear mixed models. Habitat, group size sex and alert distance did not have any effect on flight initiation distance for the three species. The three species were more alert and displayed longer flight initiation distances in the hunting area compared with the tourist area. Flight initiation distances for the three species were higher during the hunting season for the hunting area and low during the non‐hunting season. Flight distances of the three species did not differ between the hunting area and the tourist area. We concluded that trophy hunting increased perceived risk of wild ungulates in closed hunting areas, whereas ungulates in non‐hunting areas are less responsive and somehow habituated to human presence. Management plans should include minimum approach distances by tourists as well as establishing seasonal restrictions on special zones to promote species viability. Research aimed at integrating behavioural responses with physiological aspects of target species should be promoted to ensure that managers are able to deal with the behavioural trade‐offs of trophy hunting at local and regional scale.  相似文献   

19.
Flight performance of laboratory-reared adults of the plum curculio, Conotrachelus nenuphar (Herbst) (Coleoptera: Curculionidae), was investigated under controlled conditions by using a flight mill system. Across all insects tested (n=198), median values of total distance traveled, total flight time, and maximum uninterrupted flight time were 122.7 m day(-1), 23.5 min day(-1), and 2.0 min, respectively. The latter result indicates that flight occurred primarily in short bursts. Although females had a significantly higher body mass than males, there were no significant differences in flight performance between the two sexes. Flight during the first 24-h test period (especially the first 6 h) was dominated by escape behavior, i.e., elevated levels of activity presumably associated with attempts by the insects to regain freedom of movement; during the second 24 h, flight activity was very limited throughout the late morning and afternoon, increased around sunset, and remained high during the night. All flight performance variables decreased linearly and significantly with insect age over the age range tested (2-16 d after emergence). Nutritional status also had a significant effect, whereby insects that had been provided with apples as a food source for 2 d after emergence showed considerably improved flight performance compared with those that had been given no food or only water during the same period. There was no significant effect of mating status on flight performance of male or female insects.  相似文献   

20.
ABSTRACT. Adult winged forms of Aphis fabae Scop., the spring migrants (fundatrigeniae; alate virginoparae), the summer migrants (alate virginoparae) and the autumn migrants (gynoparae), were flown in an automated vertical wind tunnel, with a small green target presented every 60 s. On average, targeted flight developed in the spring and summer migrants after 19 and 15 min, respectively. However, in autumn migrants targeted flight occurred after 184 min of flight. No evidence of target approach was found up to 30 min prior to this time, although some movement towards the target was observed in the 30 min before the first response of autumn migrants, suggesting that a gradual change from migratory to targeted flight occurred. No correlation was found between aphid weight and the time to first response for spring or summer migrants, but a positive correlation was found for autumn migrants. Flight patterns of autumn migrants, in the absence of a target, are described and compared with flight patterns previously reported for summer migrants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号