首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paired lungs of the newt, Taricha granulosa, are simple, unbranched sacs, 3.5-5.0 cm in length. The inner epithelium overlying the pulmonary vein is differentiated into a mucociliary tract that extends the entire length of the lung. Populations of single, demembranated ciliary axonemes, 12-13 micron in length, can be isolated by extracting whole lungs or primary cultures of the ciliated epithelium with Triton X-100. The motile capabilities of the isolated axonemes are the highest yet obtained for any ciliary model. When exposed to a suitable reactivating medium containing Mg2+ and ATP, nearly 100% of the axonemes become motile. Uniform reactivation of high quality requires short extraction times, minimization of mechanical damage, and strict adherence to optimal conditions throughout the extraction, storage, and reactivation procedures. Significant deviations from either pH 7.0 or 0.12 M salt can lead to a rapid, irreversible decrease in the beat frequency of reactivated axonemes. Both DTT and EDTA serve to stabilize their motility. The isolated axonemes beat at 29.5 Hz in the presence of 1.75 mM ATP at 21 degrees C, matching the beat frequencies measured for cultured cells at the same temperature. With 5 mM ATP, beat frequencies over 40 Hz are measured. Our results show that neither the plasma membrane, accessory structures, nor hydrodynamic coupling of cilia are required for this activity and imply that the lack of these factors is not responsible for the low motile capabilities of ciliary models isolated previously.  相似文献   

2.
Demembranated axonemes isolated from newt lung ciliated cells show a complex beat frequency response to varying [MgATP] and temperature [Hard and Cypher, 1992, Cell Motil. Cytoskeleton 21:187-198]. The present study was undertaken to ascertain whether the beat frequency of outer-arm-depleted newt lung axonemes is controlled in a manner similar to that of intact axonemes. Populations of demembranated ciliary axonemes were isolated by Triton X-100 extraction of lungs from the newt, Taricha granulosa. Aliquots of the demembranated axonemes were further treated with solutions containing high salt (0.375 M KC1) and 1.25 mM MgATP. This treatment resulted in the selective removal of outer dynein arms and a concomitant decrease in beat frequency to a stable level, 33-35% of control values. The effects of pH, salt concentration, nucleotides, and temperature on the beat frequency of reactivated outer-arm-depleted axonemes were ascertained and compared with those of intact axonemes. Some reactivation properties, such as nucleotide specificity, the effect of pH on beat frequency and the threshold [MgATP] required for reactivation (approximately 5 microM) were similar to those observed for intact axonemes. Other properties, such as the relationship between beat frequency and varying [MgATP] or salt concentration, differed both qualitatively and quantitatively from those of control axonemes, as did their response to temperature over the range, 5 degrees-32 degrees C. The nature of the results obtained with temperature and MgATP suggests that inner and outer dynein arms are not functionally equivalent in situ.  相似文献   

3.
H Hard  A Weaver 《Tissue & cell》1983,15(2):217-226
Lungs of the newt, Taricha granulosa, provide a versatile system for studying mucociliary transport. The mucociliary epithelium is restricted to a ventral strip of epithelium which extends the entire length of the lung. The transport process can be studied in the isolated lung or in a variety of functional components derived from it. These components include: (1) isolated sheets of the mucociliary epithelium, (2) flattened epithelial sheets grown in long term primary culture, (3) dissociated ciliated and mucous cells, (4) functional, demembranated ciliary tufts, and (5) isolated populations of discrete, demembranated axonemes. The latter two models can be reactivated with MgATP and made to beat at frequencies comparable to those measured in intact cells. Featuring large cells (25-30 microns in diameter) and cilia (12-13 microns in length) in comparison to other mucus-transporting systems, coupled with the ability to perform 'physiological' experiments at ambient temperatures, newt lungs afford a convenient system to study mechanisms involved in the control of ciliary beat frequency, waveform and coordination at several levels of organization.  相似文献   

4.
Flagellar movement of intact and demembranated, reactivated ram spermatozoa   总被引:2,自引:0,他引:2  
The flagellar movement of intact ejaculated ram sperm, and of demembranated models reactivated with ATP, has been studied using high-speed, high-resolution video microscopy. Intact sperm attached to the coverslip by their heads had an average beat frequency of 20.9 Hz and an average wave amplitude of 20.2 micron. There was little difference in the beat frequency or waveform of these sperm and sperm swimming freely near the coverslip or captured by their heads with a micropipette and held far from the coverslip, indicating that the flagellar waveform of ram sperm is relatively resistant to distortion as a result of immobilization of the head or proximity to a surface. The beat envelope was nearly planar as determined by observations of free-swimming sperm and sperm captured by their head and oriented so they were beating either parallel or perpendicular to the plane of focus. The effect of various conditions for demembranation and reactivation of the sperm were examined. Treatment of sperm with 0.2% Triton X-100 removed most of their plasma membrane. Under optimal conditions, nearly 100% of the demembranated sperm reactivated at MgATP2- concentrations ranging from approximately 4 microM to approximately 20 mM. From approximately 1 mM to approximately 10 mM MgATP2-, their beat pattern closely resembled that of intact sperm; beat frequency depended on MgATP2- concentration. Percent motility was maximal between pH 7.5 and 8.0 and decreased sharply below pH 7.0 and above pH 8.5. The addition of 50 microM cAMP to the reactivation medium had no effect on percent motility or the beat pattern and did not accelerate the initiation of movement.  相似文献   

5.
Antibodies binding to sea urchin flagellar outer-doublet tubulin have been isolated from rabbit sera by tubulin-affinity chromatography employing electrophoretically purified tubulin as the immobilized substrate. This procedure provides "induced" antitubulin antibody from immune sera and "spontaneous" antitubulin antibody from preimmune sera. These antitubulins were characterized in terms of their specificity, ability to bind to sea urchin axonemes, and effects on the motility of reactivated spermatozoa. Induced antitubulin antibody specifically reduced the bend angle and symmetry of the movement of demembranated reactivated spermatozoa without affecting the beat frequency. At identical concentrations, spontaneous antitubulin had no effect on motility. Affinity-purified induced antitubulins from three other rabbits all gave specific bend-angle inhibition, whereas their corresponding spontaneous antitubulins had no effect on the flagellar movement. The effects of antitubulin on microtubule sliding were examined by observing the sliding disintegration of elastase-digested axonemes induced by MgATP2+-. Affinity-purified induced antitubulin antibody, in quantities sufficient to completely paralyze reactivated flagella, did not inhibit microtubule sliding. The amplitude-inhibiting effect of induced antitubulin on reactivated spermatozoa may be caused by action on a mechanism responsible for controlling flagellar bending rather than by interference with the active sliding process. This is the first report of an antitubulin antibody having an inhibitory activity on microtubule-associated movement.  相似文献   

6.
Milligram amounts of mammalian ciliary axonemes were isolated from porcine tracheas. These were reactivated upon addition of ATP, indicating intact functional capability with a mean beat frequency at 37 degrees C of 8.2 Hz. Electron microscopy showed typical ultrastructure of the isolated demembranated axonemes. Electrophoresis into polyacrylamide gradient gels containing sodium dodecyl sulfate revealed reproducible protein profiles from ten different tracheal preparations. Four major protein bands were observed in the 300-330 K molecular weight region, as well as tubulin at 51-54K. Extraction of the isolated tracheal axonemes with 0.6M KCl removed the outer dynein arms seen in electron microscopic cross-section of axonemes, preferentially solubilized two of the high molecular weight proteins at 320 and 330 K, and resulted in a three- to four-fold increase in ATPase specific activity. Sedimentation of the dialyzed salt extract on a 5-30% sucrose density gradient and subsequent fractionation yielded two peaks of ATPase activity. The faster migrating, 19S major ATPase peak correlated with the 320 and 330 K proteins, and two other proteins at 81 and 67 K. The slower sedimenting, 12S minor ATPase peak corresponded to a 308 K protein and two smaller proteins at 33 and 48 K. Thus, the outer dynein arm of tracheal cilia appeared to be associated with at least two high molecular weight proteins. These results demonstrate that adequate quantities of functionally intact axonemes can be reproducibly isolated from porcine tracheas, allowing further fractionation and analysis of mammalian cilia.  相似文献   

7.
Hamster spermatozoa from the caput and cauda epididymides were demembranated with 0.04% Triton X-100 and reactivated with 1 mM ATP. Motility parameters were analysed by video recording and stroboscopic photography. In the absence of added cAMP, reactivated cauda sperm showed percentage motility and forward swimming patterns similar to those of intact cells, but velocities were lower. When 2 or 20 μM cAMP was present, the velocities were increased but there was no effect on beat frequencies or percentage of forward progressing sperm. Cyclic AMP also markedly increased the percentage of cauda sperm which at first displayed nonprogressive “looping” movement. Addition of cAMP to the reactivation medium greatly improved the otherwise feeble and irregular motility of the demembranated caput sperm by increasing the percentage motility and beat frequencies of nonprogressive cells. It also induced forward motility with beat frequencies and velocities similar to cauda sperm reactivated in the absence of cAMP, but looping was never seen, indicating a change in the flagellar apparatus with maturation. The time required for the exhibition of the cAMP effects was reduced when caput sperm were reactivated in extracts of another previously maximally reactivated caput sperm preparation. The results suggest the production of some potent compound(s) by the axonemes for the manifestation of the cAMP effects.  相似文献   

8.
A nonhydrolyzable ATP analog, adenylyl imidodiphosphate (AMP-PNP), has been used to study the role of ATP binding in flagellar motility. Sea urchin sperm of Lytechinus pictus were demembranated, reactivated, and locked in "rigor waves" by a modification of the method of Gibbons and Gibbons (11). Rigor wave sperm relaxed within 2 min after addition of 4 micrometer ATP, and reactivated upon addition of 10-12 micrometer ATP. The beat frequency of the reactivated sperm varied with ATP concentration according to Michaelis-Menten kinetics ("Km" = 0.24 mM; "Vmax" = 44 Hz) and was competitively inhibited by AMP-PNP (Ki" approximately to 8.1 mM). Rigor wave sperm were completely relaxed (straightened) within 2 min by AMP-PNP at concentrations of 2-4 mM. The possibilities that relaxation in AMP-PNP was a result of ATP contamination, AMP-PNP hydrolysis, or lowering of the free Mg++ concentration were conclusively ruled out. The results suggest that dynein cross-bridge release is dependent upon ATP binding but not hydrolysis.  相似文献   

9.
Spermatozoa from the sea urchin, Lytechinus pictus, can be demembranated with solutions containing Triton X-100 and 5mM-CaCl2 and reactivated in ATP solutions containing low concentrations (10(-9)M) Of free Ca2+ ion to give symmetrical bending wave movements, even at very low ATP concentrations. At ATP concentrations of 0.01-0.02 mM the reactivated spermatozoa have beat frequencies near 1 Hz, nearly normal bend angles, and wave-lengths about 50% longer than normal. 2. The effects of increased viscosity, obtained by addition of methyl cellulose to the reactivation solutions, on bend angle and beat frequency decrease with decreasing ATP concentration, and become almost undetectable at 0.01 mM ATP. On the other hand, the effect of increased viscosity on wavelength shows relatively little change with ATP concentration, although it is noticeably reduced at 0.01 mM ATP. 3. These observations suggest that the beat frequency at low ATP concentrations is determined by an intrinsic rate-limiting process, in contrast to the viscocity-limited behaviour at high beat frequencies. Quantitative agreement with the experimental results is obtained with a model in which ATP concentration and viscosity each determine the rates of one step in a two-step reaction cycle which determines the beat frequency. 4. Two other models which can qualitatively explain the effects of ATP concentration and viscosity on flagellar beat frequency fail to show quantitative agreement with the experimental results. In one of these models, ATP concentration determines the maximum rate of shear between filaments. In the other, ATP concentration determines a time delay which is required to bring the active moment into phase with the elastic moments which would be expected to dominate the bending resistance at low beat frequencies.  相似文献   

10.
The (Na+ +K+)-activated, Mg2+-dependent ATPase from rabbit kidney outer medulla was prepared in a partially inactivated, soluble form depleted of endogenous phospholipids, using deoxycholate. This preparation was reactivated 10 to 50-fold by sonicated liposomes of phosphatidylserine, but not by non-sonicated phosphatidylserine liposomes or sonicated phosphatidylcholine liposomes. The reconstituted enzyme resembled native membrane preparations of (Na+ +K+)-ATPase in its pH optimum being around 7.0, showing optimal activity at Mg2+:ATP mol ratios of approximately 1 and a Km value for ATP of 0.4 mM. Arrhenius plots of this reactivated activity at a constant pH of 7.0 and an Mg2+: ATP mol ratio of 1:1 showed a discontinuity (sharp change of slope) at 17 degrees C, with activation energy (Ea) values of 13-15 kcal/mol above this temperature and 30-35 kcal below it. A further discontinuity was also found at 8.0 degrees C and the Ea below this was very high (greater than 100 kcal/mol). Increased Mg2+ concentrations at Mg2+:ATP ratios in excess of 1:1 inhibited the (Na+ +K+)-ATPase activity and also abolished the discontinuities in the Arrhenius plots. The addition of cholesterol to phosphatidylserine at a 1:1 mol ratio partially inhibited (Na+ +K+)-ATPase reactivation. Arrhenius plots under these conditions showed a single discontinuity at 20 degrees C and Ea values of 22 and 68 kcal/mol above and below this temperature respectively. The ouabain-insensitive Mg2+-ATPase normally showed a linear Arrhenius plot with an Ea of 8 kcal/mol. The cholesterol-phosphatidylserine mixed liposomes stimulated the Mg2+-ATPase activity, which now also showed a discontinuity at 20 degrees C with, however, an increased value of 14 kcal/mol above this temperature and 6 kcal/mol below. Kinetic studies showed that cholesterol had no significant effect on the Km values for ATP. Since both cholesterol and Mg2+ are known to alter the effects of temperature on the fluidity of phospholipids, the above results are discussed in this context.  相似文献   

11.
A ciliated protozoan, Halteria grandinella, swam backward rapidly with a migration distance per second attaining 100 times the cell size. This high swimming velocity was accompanied by a high frequency of ciliary beating. Recordings with a high-speed digital video (10(3) frames/s) revealed that the frequency during forward and backward swimming was, respectively, 105 +/- 10 Hz and 260 +/- 30 Hz. These frequencies are the highest among cilia and flagella reported to date. Electron microscopic observation of the ciliary structure confirmed normal 9 + 2 arrangements of the axoneme except that cilia for migration are bundled into membranelles. Ciliary beating of saponin-treated cells was reactivated by the addition of Mg2+ -ATP, although the beating amplitude was smaller than that of intact cells. Kinetic analysis of the ATP-dependent increase of beating frequency revealed that the maximal frequency in the presence of free Ca2+ and 0.9 microM Ca2+ was approximately 60 and 110 Hz, respectively. A possible mechanism to increase beating frequency with Ca2+ is discussed.  相似文献   

12.
We recently demonstrated that addition of the divalent cation Mg++ to demembranated cilia causes the dynein arms to attach uniformly to the B subfibers. We have now studied the dose-dependent relationship between Mg++ or Ca++ and dynein bridging frequencies and microtubule sliding in cilia isolated from Tetrahymena. Both cations promote efficient dynein bridging. Mg++-induced bridges become saturated at 3 mM while Ca++-induced bridges become saturated at 2 mM. Double reciprocal plots of percent bridging vs. the cation concentration (0.05-10 mM) suggest that bridging occurs in simple equilibrium with the cation concentration. When microtubule sliding (spontaneous disintegration in 40 mM N-2-hydroxyethylpiperazine-N'-2-ethane sulfonic acid (HEPES), 0.1 mM ATP at pH 7.4) is assayed (A350 nm) relative to the Mg++ or Ca++ concentration, important differential effects are observed. 100% Disintegration occurs in 0.5-2 mM Mg++ and the addition of 10 mM Mg++ does not inhibit the response. The addition of 0.05-10 mM Ca++ to cilia reactivated with 0.1 mM ATP causes a substantial reduction in disintegration at low Ca++ concentrations and complete inhibition at concentrations greater than 3 mM. When Ca++ is added to cilia reactivated with 2 mM Mg++ and 0.1 mM ATP, the percent disintegration decreases progressively with the increasing Ca++ concentration. The addition of variable concentrations of Co++ to Mg++-activated cilia causes a similar but more effective inhibition of the disintegration response. These observations, when coupled with the relatively high concentrations of Ca++ or Co++ needed to inhibit disintegration, suggest that inhibition results from simple competition for the relevant cation-binding sites and thus may not be physiologically significant. The data do not yet reveal an interpretable relationship between percent disintegration, percent dynein bridging, and percent ATPase activity of both isolated dynein and whole cilia. However, they do illustrate that considerable (sliding) disintegration (60%) can occur under conditions that reveal only 10-15% attached dynein cross bridges.  相似文献   

13.
The movement of live trout spermatozoa is very brief (25 sec at 20 degrees C) and conditions have been developed to get synchronous initiation of sperm motility which allowed quantification of the major parameters of sperm movement during the motility phase. Recorded flagellar beat frequencies decreased steadily from values of 55 Hz at the beginning to 20 Hz at the end of the motility phase. Sperm forward velocities followed a similar pattern from 250 to 20 microns.sec-1 in the same conditions and the diameters of sperm trajectories were reduced from 370 to 40 microns. Thus none of the characteristics of sperm movement was constant during the motile phase which ended abruptly by a straightening of the flagella. The decrease in flagellar beat frequencies and sperm velocities are much greater than what could be extrapolated from the decrease of intracellular ATP (Christen R. et al: Eur. J. Biochem, 166: 667-671, 1987) or from measurements of ATP-dependence of reactivated sperm velocities (Okuno M. and Morisawa N.: In Biological Functions of Microtubules and Related Structures. New York: Academic Press, pp. 151-162, 1982). Therefore, the cessation of flagellar beating at 25 sec is not directly the result of the low concentration of intracellular ATP. The decrease in the diameters of sperm trajectories which occurred during the first part of the motility phase was correlated with [Ca]i measurements (Cosson M.P. et al, Cell Motil. Cytoskeleton, 14:424-434, 1989). The effect of Ca2+ at the axonemal level does not indicates that Ca2+ influx is previous to flagellar beating but rather suggests a classical Ca2+ regulation of the flagellar assymetry. The short duration of the motility phase and the characteristics of sperm movement were very similar in various conditions (high external K+, low pH media) where increased external Ca2+ or divalent ions were shown to overcome K+ and H+ inhibition of sperm motility, both conditions which have been shown to depolarize the plasma membrane potential (Gatti J.L. et al: J. Cell Physiol., 143:546-554, 1990). The present study of the parameters of sperm movement suggests that once motility is initiated, a defined set of axonemal events will take place whatever the external conditions.  相似文献   

14.
The flagellar beat frequency of the biflagellated green alga Chlamydomonas reinhardtii was measured by fast Fourier transform analysis of the light intensity fluctuation in microscope images of swimming cells. Live cells had a mean beat frequency of 48-53 Hz at 20 degrees C. However, detergent-extracted "cell models," when reactivated in the presence of 1 mM ATP, appeared to have two different beat frequencies of about 30 and 45 Hz. Measurements in cell models in which only one of the two flagella was beating indicated that the lower and higher frequencies most likely represented the beat frequency of the flagellum nearer to the eyespot (the cis-flagellum) and that of the flagellum farther from it (the trans-flagellum), respectively. In live cells also, the trans-flagellum beat at a frequency about 30% higher than that of the cis-flagellum when the cells were rendered uniflagellated by mechanical treatment, whereas both flagella beat at the frequency of the cis-flagellum under normal conditions. These observations suggest that the two flagella of Chlamydomonas have different intrinsic beat frequencies but that they are somehow synchronized when beating together on a live swimming cell.  相似文献   

15.
Substitution of any of a variety of organic anions, including acetate, propionate, lactate, gluconate, and succinate, for chloride in the reactivation medium improves the motility of demembranated sperm of Tripneustes gratilla. At the optimum concentration of 0.20 N, all of these anions improve the duration of motility, with lactate and gluconate being the best. The Michaelis constant for beat frequency (Kmf) is lower (0.11-0.14 mM at 22 degrees C) in most of the organic anions than it is in Cl- (0.20 mM), and the minimum ATP concentration required to support oscillatory beating is reduced from 10 microM in chloride to 2 microM in acetate, which together indicate a greater affinity of the axonemal ATPase for MgATP2- in the organic anions media. The maximal beat frequency, fmax, is as high as 42 Hz in 0.2 N succinate compared to 31 Hz in Cl-, whereas the mean bend angle averages 2.8 rad in acetate compared to 2.4 rad in Cl-; these values give a calculated average velocity of tubule sliding of approximately 15 micron/s in acetate and succinate, which is approximately 30% greater than the value of 11 micron/s observed in chloride. The reactivated sperm are sixfold more sensitive to vanadate inhibition in 0.2 M acetate than they are in 0.15 M Cl-. The specific ATPase activity of soluble dynein 1, which increases more than 15-fold between 0 and 1.0 N Cl-, undergoes only a twofold activation over the same range of organic anion concentration, and, like the reactivated motility, is up to 50-fold more sensitive to vanadate. This greater apparent mechanochemical efficiency and the increased sensitivity to vanadate inhibition in the organic anions suggest that they, unlike chloride, do not promote the spontaneous dissociation of ADP and PO4(3-) from the dynein-ADP-PO4 kinetic intermediate in the dynein crossbridge cycle. The use of organic anion media may lead to significant improvements in reactivation of other motile and transport systems.  相似文献   

16.
A procedure was developed for isolating Chlamydomonas outer-arm dynein that can functionally combine with the axoneme of an outer-arm-missing mutant, oda1. Previous studies showed that the outer-arm dynein of this organism, containing three heavy chains (alpha, beta, gamma), dissociates upon extraction with a high-salt-concentration buffer solution into an 18-S particle containing the alpha and beta heavy chains and a 12-S particle containing the gamma heavy chain. It was found, however, that the three heavy chains did not dissociate if the high-salt extract was centrifuged in the presence of Mg2+; the three chains constituted a single species (23-S dynein) sedimenting at about 23 S and displayed a three-headed bouquet configuration in electron micrographs. Furthermore, the 23-S dynein had the activity to bind to the axonemes of oda1 and increase the reactivated motility of detergent-extracted cell models; its addition increased the beat frequency from 28 Hz to 53 Hz, a frequency comparable to that of wild-type axoneme. The 18-S and 12-S dyneins, on the other hand, were unable to increase the motility of oda1 axonemes even when added together. The new protocol thus enables purification of outer-arm dynein that retains its functional activity. It will provide a useful experimental system with which to study the mechanism of outer-arm function.  相似文献   

17.
Flagella of Chlamydomonas mutants lacking the central pair of microtubules or radial spokes do not beat; however, axonemes isolated from these mutants were found to display vigorous bending movements in the presence of ATP and various salts, sugars, alcohols, and other organic compounds. For example, about 15% of the total axonemes isolated from pf18, a mutant lacking the central pair, displayed beating in the presence of 10 mM MgSO(4) and 0.2 mM ATP at about 22 Hz, while none beat with the same concentration of ATP and < or = 5 mM or > or = 25 mM MgSO(4). The beat frequency and waveform of beating pf18 axonemes were similar to those of wild type axonemes beating under the same conditions. Similarly, 10-50% of the axonemes beat in the presence of 0.5 M sucrose, 2.0 M glycerol, or 1.7 M[10% (v/v)] ethanol. The appearance of motility did not correlate with the change in axonemal ATPase; however, these substances at those concentrations commonly increased the amplitude of nanometer-scale oscillation (hyper-oscillation) in pf18 axonemes, as well as the extent of ATP-induced sliding disintegration of protease-treated axonemes. Axonemes of double mutants lacking both the central pair and various subspecies of inner-arm dynein also beat at increased MgSO(4) concentrations, but axonemes lacking outer-arm dynein in addition to the central pair did not beat. These and other observations suggest that small molecules perturb the regulation of microtubule sliding through some change in water activity or osmotic stress. Axonemes must have an intrinsic ability to beat without the central pair/radial spokes under a variety of non-physiological solution conditions, as long as the outer dynein arms are present. Apparently, the major function of the central pair/radial spoke structures is to restore this activity under physiological conditions.  相似文献   

18.
ATP and the divalent cations Mg2+ and Ca2+ regulated K+ stimulation of the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum vesicles. Millimolar concentrations of total ATP increased the K+-stimulated ATPase activity of the Ca2+ pump by two mechanisms. First, ATP chelated free Mg2+ and, at low ionized Mg2+ concentrations, K+ was shown to be a potent activator of ATP hydrolysis. In the absence of K+ ionized Mg2+ activated the enzyme half-maximally at approximately 1 mM, whereas in the presence of K+ the concentration of ionized Mg2+ required for half-maximal activation was reduced at least 20-fold. Second MgATP apparently interacted directly with the enzyme at a low affinity nucleotide site to facilitate K+-stimulation. With a saturating concentration of ionized Mg2+, stimulation by K+ was 2-fold, but only when the MgATP concentration was greater than 2 mM. Hill plots showed that K+ increased the concentration of MgATP required for half-maximal enzymic activation approx. 3-fold. Activation of K+-stimulated ATPase activity by Ca2+ was maximal at an ionized Ca2+ concentration of approx. 1 microM. At very high concentrations of either Ca2+ or Mg2+, basal Ca2+-dependent ATPase activity persisted, but the enzymic response to K+ was completely inhibited. The results provide further evidence that the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum has distinct sites for monovalent cations, which in turn interact allosterically with other regulatory sites on the enzyme.  相似文献   

19.
After several hours in 20 mM sodium phosphate and 40 mM KCI (pH 7.4) or similar simple solutions, ciliated cells exfoliate en masse from stripped gill epithelium of freshwater mussels, e.g., Elliptio complanatus. Three types of ciliated cells--lateral (L), laterofrontal (LF), and frontal (F)--can be distiniguished and counted separately in the suspensions. About one-half of the cells of each type remain motile. Motility is unaffected by addition of 10(-5) M A23187 or 10(-2) M Ca+2 added separately, but when ionophore and Ca+2 are added together, ciliary beat is largely arrested. Treatment of the cells with Triton X-100 (Rohm & Haas Co., Philadelphia, Pa.) results in a total loss of motility as the ciliary membrane becomes disrupted. Such models can be reactivated by addition of ATP and Mg+2. All ciliated cell types are reactivated to about the same extent. At least 80% of the activity of the untreated preparation returns. Ca+2-EGTA buffers added to the reactivating solutions permit titration of free Ca+2 concentration vs. percent motility. Activity is unchanged for all cell types at Ca+2 less than 10(-7) M; at 10(-6) Ca+2, L cilia of all cell types are arrested differentially, whereas at Ca+2 greater than 10(-4) M most cilia of all cell types are arrested. We conclude: (a) that increasing cytoplasmic Ca+2 is directly responsible for ciliary arrest, (b) that the readily reversible physiological arrest response of the L cilia in the intact gill is caused by a rise in free Ca+2 in narrow limits from ca. 5 x 10(-7) M to ca. 8 x 10(-7) M, and (c) that the site which is sensitive to Ca+2 is part of the ciliary axoneme or the basal apparatus.  相似文献   

20.
The chromium(III) complex of ATP, an MgATP complex analogue, inactivates (Na+ + K+)-ATPase by forming a stable chromo-phosphointermediate. The rate constant k2 of inactivation at 37 degrees C of the beta, gamma-bidentate of CrATP is enhanced by Na+ (K0.5 = 1.08 mM), imidazole (K0.5 = 15 mM) and Mg2+ (K0.5 = 0.7 mM). These cations did not affect the dissociation constant of the enzyme-chromium-ATP complex. The inactive chromophosphoenzyme is reactivated slowly by high concentrations of Na+ at 37 degrees C. The half-maximal effect on the reactivation was reached at 40 mM NaCl, when the maximally observable reactivation was studied. However, 126 mM NaCl was necessary to see the half-maximal effect on the apparent reactivation velocity constant. K+ ions hindered the reactivation with a Ki of 70 microM. Formation of the chromophosphoenzyme led to a reduction of the Rb+ binding sites and of the capacity to occlude Rb+. The beta, gamma-bidentate of chromium(III)ATP (Kd = 8 microM) had a higher than the alpha, beta, gamma-tridentate of chromium(III)ATP (Kd = 44 microM) or the cobalt tetramine complex of ATP (Kd = 500 microM). The beta, gamma-bidentate of the chromium(III) complex of adenosine 5'-[beta, gamma-methylene]triphosphate also inactivated (Na+ + K+)ATPase. Although CrATP could not support Na+, K+ exchange in everted vesicles prepared from human red blood cells, it supported the Na+-Na+ and Rb+-Rb+ exchange. It is concluded that CrATP opens up Na+ and K+ channels by forming a relatively stable modified enzyme-CrATP complex. This stable complex is also formed in the presence of the chromium complex of adenosine 5'-[beta, gamma-methylene]triphosphate. Because the beta, gamma-bidentate of chromium ATP is recognized better than the alpha, beta, gamma-tridentate, it is concluded that the triphosphate site recognizes MgATP with a straight polyphosphate chain and that the Mg2+ resides between the beta- and the gamma-phosphorus. The enhancement of inactivation by Mg2+ and Na+ may be caused by conformational changes at the triphosphate site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号