首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
首次尝试了将显微傅里叶变换红外光谱术应用于研究电融合后细胞膜蛋白质二级结构的变化,发现脉冲电场作用于细胞具有穿透效应,施加电脉冲后,整个细胞的蛋白质体系能量增加,表明电泳冲对蛋白的二结构影响很大;同时,还发现用唾液酸苷酶和蛋白酶Pronase分析处理巨噬细胞膜表面后,膜上蛋白质二级结构无序化程度增加,用酶适度处理的细胞将更易发生电融合。  相似文献   

2.
鱼类细胞电融合的初步研究   总被引:6,自引:0,他引:6  
电融合是一种细胞生物学新技术,它的融合率高、操作简便、无毒性、可在显微镜下直接观察融合过程,是细胞杂交与基因转移的有效手段之一。近几年来,这一技术已广泛用于动物、植物、微生物细胞和原生质体的融合1~4。但是,至今未见有电场诱导鱼类细胞融合的研究报道。我们采用国产元、器件,研制出一套供试验用的电融合装置,研究了电场诱导鱼类细胞的融合效应。    相似文献   

3.
脉冲电场对人红细胞膜结构影响的冷冻断裂研究   总被引:4,自引:0,他引:4  
对外加脉冲电场处理的人红血球冷冻断裂和蚀刻的复型观察中发现在强电场作用下,细胞周围有颗粒状和纤维状结构。结合SDS电泳分析证明了它们是由于在电场作用下,红血球膜的带3蛋白和膜骨架蛋白(血影蛋白)脱出的结果。在强电场作用下,由于膜蛋白和膜骨架蛋白的脱出造成了对细胞膜的损伤,使细胞膜稳定性降低,细胞易变形和形成伪足。由于膜蛋白的脱出,多余的自由脂进入细胞质内而形成泡状结构。外电场改变了蛋白-蛋白以及蛋  相似文献   

4.
哺乳动物细胞电融合技术及其影响因素的研究进展   总被引:6,自引:0,他引:6  
细胞电融合技术是指利用电脉冲促使两个或更多个不同的细胞融合在一起的过程。由于可以获得较高的融合率,而且可以在显微镜下定向诱导细胞融合和直接挑选杂种细胞,故电融合技术得到了广泛的应用。电融合技术对于哺乳动物杂种细胞的构建;哺乳动物四倍体发育的研究;以及胚胎细胞核移植都具有十分重要的意义。因此,人们对哺乳动物的电融合问题进行了大量的研究,现将这方面的研究进展做一综述。 (一)电融合技术的原理及方法 悬于平行电极之间的低电导率溶液中的细胞,在适当强度与持续时间的直流电脉冲的刺激下,其细胞膜可发生可逆电击穿,此时如两个具有膜微孔的细胞紧穿接触,可导致细胞质桥的形成,进而发生细胞融合。  相似文献   

5.
对外加脉冲电场处理的人红血球冷冻断裂和蚀刻的复型观察中发现在强电场(3KV/cm)作用下,细胞周围有颗粒状和纤维状结构。结合SDS电泳分析证明了它们是由于在电场作用下,红血球膜的带3蛋白和膜骨架蛋白(血影蛋白)脱出的结果。在强电场作用下,由于膜蛋白和膜骨架蛋白的脱出造成了对细胞膜的损伤,使细胞膜稳定性降低,细胞易变形和形成伪足。由于膜蛋白的脱出,多余的自由脂质进入细胞质内而形成泡状结构。外电场改变了蛋白-蛋白以及蛋白-脂分子间的作用可能是电穿孔的主要机理。本文还对当前公认的冷冻断裂中所观察到的膜中间颗粒的来源提出了疑问,并提出了它们还可能与冰晶有关。而冰晶的形成又与膜的亲水与疏水性有关。  相似文献   

6.
电脉冲介导鱼类细胞融合的初步研究   总被引:1,自引:0,他引:1  
1980年U. Zimmermann首先报道了电融合的新技术,近年来,这一技术发展很快,应用范围极广,它是利用RC放电脉冲使紧密接触的细胞膜产生瞬时可逆电穿孔,细胞随电脉冲同步而进行融合。 本实验用电脉冲介导的方法,在同种和异种的金鱼囊胚细胞之间诱导融合,并研究了在融合前用稀释的凝集素使相邻细胞间的膜紧密接触,而不用交  相似文献   

7.
细胞电融合(cell electrofusion)是一种发展迅速的细胞工程技术,在细胞融合研究领域得到了最广泛的应用。细胞电融合利用细胞在相对电极之间的介电电泳,诱导细胞按特定方向排列,通过电极间产生的较高场强的电脉冲使相互接触的细胞发生电穿孔,进而发生电融合。融合后的细胞得到了不同细胞的遗传物质,具有新的遗传或生物特性。目前,细胞电融合技术对生物医学、农业等相关领域的研究具有非常重要的意义。本文介绍了细胞电融合技术及其最新研究动态,并简单介绍了本实验室在该领域的研究进展。  相似文献   

8.
低频、低压交变电场对成骨细胞增殖的影响   总被引:3,自引:0,他引:3  
低频、低压交变电场能够促进成骨细胞的增殖。成骨细胞受交变电场作用以后,运用MTT方法和流式细胞术,检测细胞的增殖情况。结果表明:电场作用后的细胞,与对照组细胞相比,细胞数目增多,S期细胞百分比增高。运用荧光标记技术检测细胞膜流动性以及胞内游离Ca2+浓度([Ca2+]i)的变化,初步探索电场对细胞增殖影响的作用机制。  相似文献   

9.
本文针对建立空间细胞电融合技术存在的三个主要问题进行了研究。结果表明,用低温(4℃)、融合介质(0.55 mol/L甘露醇)并添加0.1%纤维素酶保存原生质体,72 h内可以使约94%细胞维持无壁状态,同时并未使细胞丧失再生能力,基本满足从地面制备亲本细胞到在微重力条件下进行电融合,对亲本细胞保持无壁状态的要求。为减少剪切力环境对亲本细胞造成的损伤,一方面用超速离心方法对亲本细胞之一去液泡,另一方面用电泳代替蠕动泵混合亲本细胞。而且,由于原生质体壁生长与其膜电位之间存在负相关性,因此利用电泳方法可以有效地富集和优化亲本细胞。根据地面实验结果推测,空间有/无液泡亲本细胞电融合的较适合参数可能为:交流电场强度90V/cm,频率0.8 MHz,排列时间20 s,直流脉冲1.0—1.3 kV/cm,幅宽40μs,两次脉冲。  相似文献   

10.
胡汛  余海 《细胞生物学杂志》1993,15(3):138-140,126
用一系列电融合参数(脉幅2—6kV/cm,脉宽10—90μs)处理K562,NS-1及小鼠脾脏细胞。结果说明,在以上电脉冲范围内,K562细胞的存活率不发生显著变化,其存活率均在80%左右波动。线性回归分析表明,其存活率与脉幅或脉宽变化均无显著相关性。NS-1细胞经脉幅为4kV/cm,脉宽为70μs的电脉冲处理,细胞存活率显著下降,仅为对照细胞的31%,并且细胞存活率与脉幅呈显著性负相关。小鼠脾细胞则在脉宽为50μs,脉幅为2kV/cm的电脉冲处理后,LPS诱导的B淋巴细胞~3H-Tdr掺入明显受到抑制,并且~3H-Tdr掺入与脉幅呈显著性负相关。3种细胞对电击穿的耐受性依次是K562细胞>NS-1细胞>小鼠脾脏B淋巴细胞。根据Zimmer-mann的理论推导,细胞膜电击穿主要与细胞直径有关,细胞直径越大,细胞膜击穿电压所需外加电场越小,反之亦然。然而本实验结果并不符合此规律。本文探讨了影响细胞膜电击穿的其他因素。  相似文献   

11.
In vivo cell electrofusion   总被引:3,自引:0,他引:3  
In vitro electrofusion of cells brought into contact and exposed to electric pulses is an established procedure. Here we report for the first time the occurrence of fusion of cells within a tissue exposed in vivo to permeabilizing electric pulses. The dependence of electrofusion on the ratio of applied voltage to distance between the electrodes, and thus on the achievement of in vivo cell electropermeabilization (electroporation) is demonstrated in the metastasizing B16 melanoma tumor model. The kinetics of the morphological changes induced by cell electrofusion (appearance of syncytial areas or formation of giant cells) are also described, as well as the kinetics of mitosis and cell death occurrence. Finally, tissue dependence of in vivo cell electrofusion is reported and discussed, since electrofusion has been observed neither in liver nor in another tumor type. Particular microenvironmental conditions, such as the existence of reduced extracellular matrices, could be necessary for electrofusion achievement. Since biomedical applications of in vivo cell electropermeabilization are rapidly developing, we also discuss the influence of cell electrofusion on the efficacy of DNA electrotransfer for gene therapy and of antitumor electrochemotherapy, in which electrofusion could be an interesting advantage to treat metastasizing tumors.  相似文献   

12.
13.
Electrofusion of mammalian cells in strongly hypo-osmolar media containing sorbitol, small amounts of divalent cations and albumin resulted in high yields of hybrids. The number of viable hybrids was higher than any value for chemically- or electrically-mediated fusion reported in the literature. Optimum clone numbers were obtained for fusion of osmotically-stable subclones of murine myeloma cells with DNP-Hy-stimulated lymphocytes provided that the osmolarity of the fusion medium was as low as 75 mosmol/l. Similar results were obtained for fusion of osmotically stable subclones of myeloma cells with the murine hybridoma cell line G8. Due to the dramatic increase in volume the field strength of the breakdown pulse (leading to fusion of the dielectrophoretically aligned cells) has to be reduced, as predicted by theory. The efficacy of hypo-osmolar electrofusion allowed the use of very few cells (about 10(5) lymphocytes or G8 cells per fusion chamber). This figure is considerably smaller than that reported in the literature for iso-osmolar electrofusion. It is significant that, in contrast to iso-osmolar conditions, the fusion yield in hypo-osmolar electrofusion was reproducible over long periods of time and less dependent of variations between cultures. At suspension densities of about 10(6) cells per fusion chamber (normally used in iso-osmolar electrofusion) hypo-osmolar electrofusion of homogeneous cell suspensions resulted in the formation of many giant cells when the appropriate field conditions were applied. Similar high or, at some field strengths, even higher numbers of clones at low cell suspension density were obtained when G8 and myeloma cells were first exposed during the washing procedure to strongly hypo-osmolar media, but then transferred to iso-osmolar solutions for electrofusion. Similar experiments with lymphocytes and myeloma cells failed because of destruction of many lymphocytes by the two osmotic shock steps in rapid succession. Volume distribution measurements of G8 and myeloma cells showed that after re-incubation of the osmotically pre-stressed cells the original volume distribution is largely, but not completely re-established. This and other results indicate that osmotic pressure gradients and associated tensions in the membrane do not play a primary role in the initiation of the electrofusion process. The experiments suggest that due to the osmotic (pre-) stress the membrane permeability is slightly and uniformly increased presumably due to the dissolution of membrane- and cell-skeleton proteins. Obviously, this facilitates electrofusion in hypo-osmolar or subsequently in iso-osmolar solutions.  相似文献   

14.
A technique is presented which allows electrofusion of single cells under sterile conditions. The electrofusion chamber is placed in a Petri dish. Before a droplet of the fusion medium is pipetted between the electrodes, the chamber is completely covered with vaseline, which prevents the fusion medium evaporating. Additionally, the fusion chamber is treated with solutions containing poly(L)-lysine and pronase which results in a decreased movement of the cells on the glass between the electrodes and which allows electrofusion without any proteolytic pretreatment.  相似文献   

15.
Application of a high electric field to cells in culture has been shown to make them both permeable and fusogenic. The molecular events involved in the phenomenon are still poorly understood. In this study we investigated the effects of the ionic strength of the pulsing buffer on the electropermeabilization and electrofusion of Chinese hamster ovary cells. Increasing the ionic strength of the pulsing medium results in an increase in sieving of transient permeant structures, but decreases the fusion index. Treatment of cells with trypsin or pronase before application of the pulses abolishes the ionic modulation of both electropermeabilization and electrofusion. A similar rate of expansion of permeabilization is obtained whatever the ionic content of the pulsing buffer, and cells fuse even at high ionic strength. This observation lends support to our hypothesis that membrane proteins play a role in electrofusion.  相似文献   

16.
The fusogenic state of the cell membrane can be induced by external electric field. When two fusogenic membranes are in close contact, cell fusion takes place. An appropriate hypotonic treatment of cells before the application of electric pulses significantly improves electrofusion efficiency. How hypotonic treatment improves electrofusion is still not known in detail. Our results indicate that at given induced transmembrane potential electroporation was not affected by buffer osmolarity. In contrast to electroporation, cells’ response to hypotonic treatment significantly affects their electrofusion. High fusion yield was observed when B16-F1 cells were used; this cell line in hypotonic buffer resulted in 41?±?9?% yield, while in isotonic buffer 32?±?11?% yield was observed. Based on our knowledge, these fusion yields determined in situ by dual-color fluorescence microscopy are among the highest in electrofusion research field. The use of hypotonic buffer was more crucial for electrofusion of CHO cells; the fusion yield increased from below 1?% in isotonic buffer to 10?±?4?% in hypotonic buffer. Since the same degree of cell permeabilization was achieved in both buffers, these results indicate that hypotonic treatment significantly improves fusion yield. The effect could be attributed to improved physical contact of cell membranes or to enhanced fusogenic state of the cell membrane itself.  相似文献   

17.
In this study, C57BL/6 adult male mouse ear fibroblast cells and Kunming mouse M2 oocytes were used as donors and recipients, respectively, to investigate the effect of passage number on donor cells and electrofusion times on the in vitro development of nuclear transfer (NT) embryos. The results demonstrated firstly that when the ear fibroblast cells from either 2-4, 5-7 or 8-10 passages were used as donors, respectively, to produce NT embryos, the number of passages undergone by the donor cells had no significant effect on the in vitro development of NT embryos. The developmental rates for morula/blastocyst were 15.2, 13.3 and 14.0%, respectively, which were not significantly difference (p>0.05). Secondly, when the NT embryos were electrofused, there was no significant difference between the fusion ratio for the first electrofusion and the second electrofusion (p>0.05). The developmental rates of the 2-cell and 4-cell stages that had undergone only one electrofusion, however, were significantly higher than those that had had two electrofusions (65.7% compared with 18.4% and 36.4% compared with 6.1%; p<0.01), furthermore the NT embryos with two electrofusions could not develop beyond the 4-cell stage. This study suggests that this protocol might be an alternative method for mouse somatic cloning, even though electrofusion can exert negative effects on the development of NT embryos.  相似文献   

18.
Here, we report a method for introducing large objects of up to a micrometer in diameter into cultured mammalian cells by electrofusion of giant unilamellar vesicles. We prepared GUVs containing various artificial objects using a water-in-oil (w/o) emulsion centrifugation method. GUVs and dispersed HeLa cells were exposed to an alternating current (AC) field to induce a linear cell–GUV alignment, and then a direct current (DC) pulse was applied to facilitate transient electrofusion. With uniformly sized fluorescent beads as size indexes, we successfully and efficiently introduced beads of 1 µm in diameter into living cells along with a plasmid mammalian expression vector. Our electrofusion did not affect cell viability. After the electrofusion, cells proliferated normally until confluence was reached, and the introduced fluorescent beads were inherited during cell division. Analysis by both confocal microscopy and flow cytometry supported these findings. As an alternative approach, we also introduced a designed nanostructure (DNA origami) into live cells. The results we report here represent a milestone for designing artificial symbiosis of functionally active objects (such as micro-machines) in living cells. Moreover, our technique can be used for drug delivery, tissue engineering, and cell manipulation.  相似文献   

19.
Summary Fusion products were created by the electrofusion of single sperm cells with single synergids and central cells. The synergid was also fused with the sperm cell, occasionally in the presence of adhering second synergids, egg cells, and central cells. Single egg cells were fused with single sperm cells in the presence of adhering synergids and the central cell. Cytoplasmic organelles were transmitted through the fertilization process by electrofusion using cytoplasts of maize mesophyll cells. Cell reconstitution was achieved by fusion of one or two sperm cells with single enucleated protoplasts, thus creating a haploid or a diploid cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号