首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 41-residue corticotropin releasing factor (CRF) was synthesized by the solid phase method. The synthetic CRF and arginine vasopressin (AVP) were examined for ACTH releasing activity and effects on the release of 5 other pituitary hormones in vivo and in vitro. Injection of the CRF into pharmacologically blocked rats increased plasma corticosterone levels in a dose-related manner. The minimum effective dose was 1.6 x 10(-12) mol/100 g body weight. CRF also significantly stimulated release of ACTH-like immunoreactivity in a dose-related manner from rat pituitary quarters beginning at a concentration of 10(-9) M. AVP, a peptide known to have CRF activity, exhibited slightly lower corticotropin releasing activity than the CRF at equimolar dose levels. Secretion of other pituitary hormones was not appreciably altered by either the CRF or AVP.  相似文献   

2.
The effect of synthetic atrial natriuretic peptide (ANP) was examined on the in vivo and in vitro release of ACTH. Intravenous ANP (4 micrograms/kg body weight) administration did not affect the corticotropin releasing factor (CRF, 4 micrograms/kg body weight)-, arginine vasopressin (AVP, 2 micrograms/kg body weight)- and angiotensin II (A II, 4 micrograms/kg body weight)-induced ACTH release in unanesthetized freely moving rats. ANP did not inhibit the basal, CRF- and AVP-induced release of ACTH in pituitary cell cultures. ANP did not affect the CRF- and AVP-induced plasma corticosterone elevation, while it attenuated the AVP-induced corticosterone elevation. These results indicate that ANP does not affect the ACTH release at the pituitary level in vivo and in vitro.  相似文献   

3.
L Bueno  J Fioramonti 《Peptides》1986,7(1):73-77
Gastrointestinal motor activity following intracerebroventricular (ICV) and intravenous (IV) administration of corticotropin releasing factor (CRF), corticotropin (ACTH) and cortisol was investigated in fasted dogs with strain-gauge transducers chronically implanted on the antrum and proximal jejunum. ICV but not IV administration of CRF (20 to 100 ng/kg) suppressed the gastric cyclic migrating motor complex (MMC) for 3 to 6 hours without affecting the jejunum. Similar disruptive effects on the gastric MMC were observed after ICV administration of ACTH (0.5 U/kg) or cortisol (0.1 micrograms/kg) but not after IV administration of 10 times higher doses. These results suggest that in dog CRF may be involved in the central control of the interdigestive gastric motility, these effects were not probably due to the release of ACTH and cortisol the other hormones of the pituitary adrenocortical system change the gastric motility when centrally administered through a possible feed-back mechanism affecting brain CRF level.  相似文献   

4.
The role of cyclic AMP in the stimulation of corticotropin (ACTH) release by corticotropin-releasing factor (CRF), angiotensin II (AII), vasopressin (VP), and norepinephrine (NE) was examined in cultured rat anterior pituitary cells. Synthetic CRF rapidly stimulated cyclic AMP production, from 4- to 6-fold in 3 min to a maximum of 10- to 15-fold at 30 min. Stimulation of ACTH release by increasing concentrations of CRF was accompanied by a parallel increase in cyclic AMP formation, with ED50 values of 0.5 and 1.3 nM CRF for ACTH and cyclic AMP, respectively. A good correlation between cyclic AMP formation and ACTH release was also found when pituitary cells were incubated with the synthetic CRF(15-41) fragment, which displayed full agonist activity on both cyclic AMP and ACTH release with about 0.1% of the potency of the intact peptide. In contrast, the CRF(21-41) and CRF(36-41) fragments were completely inactive. The other regulators were less effective stimuli of ACTH release and caused either no change in cyclic AMP (AII and VP) or a 50% decrease in cyclic AMP (NE). Addition of the phosphodiesterase inhibitor, methylisobutylxanthine, increased the sensitivity of the ACTH response to CRF but did not change the responses to AII, VP, and NE. In pituitary membranes, adenylate cyclase activity was stimulated by CRF in a dose-dependent manner with ED50 of 0.28 nM, indicating that the CRF-induced elevation of cyclic AMP production in intact pituitary cells is due to increased cyclic AMP biosynthesis. The intermediate role of cyclic AMP in the stimulation of ACTH release by CRF was further indicated by the dose-related increase in cyclic AMP-dependent protein kinase activity in pituitary cells stimulated by CRF with ED50 of 1.1 nM. These data demonstrate that the action of CRF on ACTH release is mediated by the adenylate cyclase-protein kinase pathway and that the sequence requirement for bioactivity includes the COOH-terminal 27 amino acid residues of the molecule. The other recognized regulators of ACTH release are less effective stimuli than CRF and do not exert their actions on the corticotroph through cyclic AMP-dependent mechanisms.  相似文献   

5.
Electrical stimulation of hypophysical posterior lobes in vivo evokes a significant decrease of plasma growth hormones (GH) and an increase of plasma corticotropin (ACTH) concentrations. Electrical stimulation of posterior lobes in vitro evokes the simultaneous release of GH inhibiting factor(s) (GHRIF) and ACTH releasing factor(s) (CRF) into the medium. Pretreatment of media with thioglycolate abolishes the CRF and GHRIF activity, but reveals GH releasing factor(s) (GHRF). Median eminence extracts and vasopressin have potent GHRF and CRF activity. Vasopressin may account fully for the CRF and partially for GHRF activity. Results suggest that hypothalamo-neurohypophysical axons release GHRIF, vasopressin and possibly a GHRF into a portal circulation to modulate the secretion of GH and ACTH.  相似文献   

6.
Effects of 1-(m-trifluoromethylphenyl)-piperazine, a serotonin agonist, were examined on rat plasma levels of adrenocorticotropin (ACTH) and arginine vasopressin (AVP), and on hypothalamic contents of corticotropin releasing factor (CRF) and AVP, to investigate the role of brain serotonin in ACTH regulation. Both plasma ACTH and AVP levels increased markedly 30 min after injection of the compound and were still elevated at 80 min. CRF and AVP contents in the median eminence decreased 30 min after injection but returned to the basal levels by 80 min. The AVP content in the supraoptic nucleus was elevated 80 min after injection. The CRF and aVP content did not significantly change in the paraventricular, suprachiasmatic and arcuate nuclei. Serotonin or 1-(m-trifluoromethylphenyl)-piperazine did not stimulate the release of ACTH in pituitary cell cultures. These results suggest that both CRF and AVP were secreted into the portal vessels by 1-(m-trifluoromethylphenyl)-piperazine to release ACTH from the anterior pituitary and that both the ACTH and AVP release were stimulated via the brain serotonergic mechanism.  相似文献   

7.
Short-term effects of hypothalamic releasing factors on feeding behavior and digestive motility patterns were assessed in hay-fed sheep trained to eat more than half the total amount eaten over 8 h within the first 3 h after food presentation. Thyrotropin-releasing hormone (TRH) given intracerebroventricularly (ICV, 30 ng/kg) or intravenously at higher doses (IV, 3 micrograms/kg) reduced food consumption by 20 p. cent. The ICV or IV TRH-induced reduction was associated with behavioral excitation and stimulation of antroduodenal motor activity without changes in water intake. The ovine corticotropin releasing factor (oCRF 41) decreased food and water intake by 30-50% when administered ICV (60 ng/kg) but was not active when given systemically at doses up to 6 micrograms/kg. The synthetic human growth hormone releasing factor (hGRF 44) administered centrally (60 ng/kg) increased the amount of food intake and the antral motor activity without behavioral excitation. The results indicate a centrally-mediated facilitation of food intake by GRF and its inhibition by CRF which also affect water consumption. The presence of digestive motor effects suggests that extrapituitary pathways may be involved, as for TRH, in the action of both GRF and CRF.  相似文献   

8.
We developed an improved in vivo bioassay for corticotropin releasing factor (CRF) by modifying the injection schedule in the standard chlorpromazine-morphine-pentobarbital assay procedure. A combined injection of chlorpromazine and morphine followed 75 min later by injection of pentobarbital produced low basal levels of corticosterone and rendered the animals highly sensitive to synthetic CRF but insensitive to the stress of ether or histamine. The lowest dose of CRF that significantly elevated plasma corticosterone levels was 0.01 micrograms/kg. Using this assay, we studied CRF-arginine vasopressin (AVP) interactions at doses that were expected to raise systemic peptide concentrations to levels measured in hypophysial portal blood. The threshold for a significant corticosterone response was found to be at least 250-fold lower for CRF-41 than for AVP. The order in which CRF and AVP are injected was also found to be important, potentiation being greater if CRF was given first. In addition, rats deprived of water for 24 hr were more sensitive to CRF than normally hydrated animals.  相似文献   

9.
Iwabuchi M  Oki Y  Yoshimi T 《Life sciences》1999,64(12):1055-1062
Activation of protein kinase C (PKC) stimulates adrenocorticotropin (ACTH) release synergistically in the presence of corticotropin releasing factor (CRF). We examined the effect of a cyclic nucleotide-specific phosphodiesterase inhibitor, 1-isoamyl-3-isobutylxanthine (IIX), on arginine vasopressin (AVP)-induced ACTH release and intracellular cAMP accumulation in normal rat anterior pituitary cells. IIX alone elevated intracellular cAMP accumulation. IIX potentiated AVP-induced ACTH release synergistically without further increase in cAMP accumulation, suggesting that synergistic ACTH release has an alternative mechanism other than the synergistic elevation of intracellular cAMP accumulation which has been reported. Phorbol 12-myristate-13-acetate (PMA) also induced synergistic ACTH release when incubated with IIX. IIX had no additional effect on ACTH response when incubated with maximal dose of CRF, forskolin or 8-bromoadenosine 3',5'-cyclic monophosphate (8-Br-cAMP). Moreover, the combination of PMA and 8-Br-cAMP produced synergistic ACTH response. In conclusion, the synergistic ACTH release from rat pituitary corticotrophs occurs at least in the presence of directly activating events of PKC and PKA as well as PKC-induced inhibition of phosphodiesterase activity.  相似文献   

10.
The aim of this review was to summarize the present state of knowledge concerning the mode of action of vasopressin (VP) and the putative corticotropin releasing factor (CRF) on ACTH secretion from the anterior and intermediate lobes of the pituitary gland. In vitro data show that although both CRF and VP enhanced release of anterior pituitary ACTH, the pattern of hormonal release, based on kinetical and dose-dependent studies, appeared to be different. Also, the effect of VP most probably was mediated by specific putative receptor sites. In contrast, VP was found not to alter ACTH secretion from the intermediate lobe; that secretion seems to be regulated by CRF-like material and neurotransmitters. The importance of VP as a corticotropin agent is discussed.  相似文献   

11.
Adenohypophysial cells from female Wistar rats were dispersed and maintained for 4 days in primary culture in the presence of [3H]myoinositol. The effects of several releasing hormones, corticotropin-releasing factor (CRF), arginine vasopressin (AVP), angiotensin II (A II), thyrotropin-releasing hormone (TRH), and luteinizing hormone-releasing hormone (LHRH) on the liberation of labelled inositol phosphate (InsP), inositol-bisphosphate (InsP2), and inositol-trisphosphate (InsP3) from prelabelled inositol lipids were tested alone and in combination. Of the corticotropin (ACTH) secretagogues tested, AVP and A II produced a dose-dependent increase in inositol phosphate accumulation. CRF was inactive. The ED50 values of about 1 nM for both AVP and A II were close to the corresponding dissociation constants for binding to pituitary membranes: and, in the case of A II, close to the ED50 for A II-induced inhibition of pituitary membrane adenylate cyclase. The responses to A II and AVP could be inhibited by [Sar1,Ile8]A II and the AVP antagonist d(Et2)-VAVP, respectively. The magnitude of the maximal effect of AVP on accumulation of inositol phosphates was small (25% increase over basal value) suggesting that this effect was restricted to a minor subpopulation of pituitary cells (probably corticotrophes). CRF did not potentiate AVP-induced inositol phosphates accumulation. Maximal A II-induced increase in inositol phosphates accumulation represented 150% of the basal value and was partially additive with that of TRH suggesting that lactotrophes represent the main A II-sensitive subpopulation.  相似文献   

12.
The corticotropin-releasing factor (CRF) analog CRF 9-41 inhibits CRF, but not forskolin or dibutyryl cyclic AMP, stimulated release of ACTH from isolated pituitary cells. CRF 9-41 also blocks CRF-stimulated accumulation of cyclic AMP in a parallel dose dependent fashion. CRF 9-41 has no effect on basal ACTH release or cAMP levels. This substantiates that the analog acts as a direct CRF antagonist and that the site of this inhibition is most likely at the level of binding of CRF to its receptor on the corticotrope. Various substances, including most prominently glucocorticoids, inhibit release of ACTH from the pituitary. In an effort to develop another class of inhibitors, Rivier et al recently synthesized analogs of corticotropin releasing factor (CRF). One among these, alpha-helical ovine CRF 9-41 blunts adrenalectomy and stress induced ACTH release in non-anesthetized rats. At micromolar concentrations, CRF 9-41, shifts rightward the dose response of isolated pituitary cells to ovine CRF. Thus, the authors suggested that CRF 9-41 acts as a competitive antagonist to CRF-induced ACTH secretion. CRF appears to act through stimulation of adenylate cyclase. To determine the potential site of action of CRF 9-41 in the activation sequence for adenylate cyclase, we studied its effects on pituitary cyclic AMP formation and ACTH secretion from dispersed anterior pituitary cells derived from normal adult rats, as well as, its interaction with cyclic nucleotide agonists.  相似文献   

13.
A J Fischman  R L Moldow 《Life sciences》1984,35(12):1311-1319
The ability of the neurohypophyseal hormones and related synthetic peptides to potentiate the action of synthetic ovine corticotropin releasing factor (CRF-41) was examined using male rats whose endogenous CRF release was blocked with chlorpromazine, morphine and nembutal. CRF potency was clearly related to the pressor activity of the analogues. However, the threshold dose for eliciting a significant corticosterone response with the neurohypophyseal hormones was greater than with CRF-41. When arginine vasopressin (AVP) was coadministered with CRF-41 at subthreshold doses of both peptides, a significant corticosterone response was observed. When the neurohypophyseal hormone analogues were compared with regard to intrinsic CRF bioactivity, it was observed that an L-basic residue in sequence position 8 is necessary for high intrinsic activity. With one exception, l-Deamino-(9-D-Ala) arginine vasopressin, the ability to potentiate the effect of CRF-41 was related to the intrinsic CRF potency of the analogues. These results support previous reports of in vitro potentiation of CRF-41 by AVP and point out the complexity of CRF-neurohypophyseal hormone interaction in vivo.  相似文献   

14.
D M Gibbs  W Vale  J Rivier  S S Yen 《Life sciences》1984,34(23):2245-2249
The effects of CRF(41), oxytocin (OT), and arginine vasopressin (AVP) on ACTH secretion were studied alone and in combination in an in vitro system of superfused rat hemipituitaries. CRF(41) (10(-9)M) and AVP (10(-8)M) alone produced a significant increase in ACTH secretion while OT (10(-8)M) alone had no effect. However the same concentration of OT markedly potentiated the ACTH response to CRF(41) while having no effect on the ACTH response to AVP. The data support a physiologic role for OT in the regulation of ACTH secretion.  相似文献   

15.
A biotin-conjugated synthetic corticotropin releasing factor (B-CRF) was prepared and characterized. Its biological activity and binding affinity were compared with that of unlabeled synthetic CRF. Both forms of the releasing factor were equipotent in in vitro studies measuring the release of corticotropin (ACTH) (ED50 = 1 nM). The IC50 in the binding assays was 1.5 nM for CRF and 4 nM for B-CRF. Dual avidin-biotin peroxidase complex stains were then used in pituitary monolayer cultures to visualize receptivity to the releasing factor and to confirm opiocortin storage in the target cells. All corticotropes showed stain for B-CRF. The percentage of cells that were double-labeled for ACTH and CRF increased with the dose of B-CRF during a four hour incubation period. The CRF stain was abolished, however, when an excess of unlabeled CRF was added to compete with B-CRF. The distribution of the B-CRF and ACTH stains varied in the cells with the time of exposure to the analog. These studies show that biotin-conjugate CRF is a potent analog that can be demonstrated cytochemically on cells identified immunocytochemically as corticotropes. It can be used to follow important events associated with CRF stimulation including the rapid internalization of CRF coupled with the mobilization of corticotropin stores and the formation of cellular processes.  相似文献   

16.
Blood concentrations of anterior pituitary hormones, ACTH, GH, TSH, PRL, LH, and FSH were determined in corticotropin releasing factor (CRF) test (synthetic ovine CRF 1.0 microgram per kg body weight) and growth hormone releasing factor (GRF) test (synthetic human pancreatic GRF-44 100 micrograms) in 2 female sibling patients with congenital isolated TSH deficiency, in their mother, in 2 patients with congenital primary hypothyroidism and in 8 normal controls. The patients with isolated TSH deficiency showed normally increased plasma ACTH and serum GH after CRF and GRF, respectively, and also showed an abnormal GH response to CRF. The serum GH showed a rapid increase to maximum levels (12.9 ng/ml) within 30 to 60 min followed by decrease. The possibility of secretion of abnormal GH could be excluded by the fact that on serum dilution, GH value gave a linear plot passing through zero. In addition, serum PRL, LH and FSH levels after CRF administration in case 1 and PRL after GRF in case 2 were also slightly increased but these responses were marginal. The mother of the patients, patients with congenital primary hypothyroidism, and normal healthy controls showed normal responses of pituitary hormones throughout the experiment. Data from the present study and a previous report show that abnormal GH response to the hypothalamic hormones (CRF, TRH and LHRH) may be observed in patients with congenital isolated TSH deficiency.  相似文献   

17.
The present study tested the hypothesis that action of sex steroids on the hypothalamus-pituitary-adrenal (HPA) axis is measurable in the hypothalamus. Late-gestation fetal sheep were treated (5 mg/21 days) with either estradiol, androstenedione, or tamoxifen and compared to age-matched control fetuses. Tamoxifen significantly increased hypothalamic corticotropin releasing factor (CRF) and arginine vasopressin (AVP) concentrations, and androstenedione significantly decreased hypothalamic CRF concentration. Adult sheep were treated with estrone (10 mg/21 days), and responded with significant increases in hypothalamic AVP concentration, but not in immunoreactive ACTH concentration or processing within the pituitary. The results demonstrate that the effect of estrogen on the HPA axis is measurable in the hypothalamus, and is therefore not primarily at the anterior pituitary.  相似文献   

18.
The changes of plasma 19-hydroxyandrostenedione (19-OH-A-dione) and 6 beta-hydroxyandrostenedione (6 beta-OH-A-dione) during the infusion of angiotensin II were evaluated and were compared with those of plasma aldosterone in man. Angiotensin II was infused into 5 normal subjects with an infusion pump at rates of 0.5, 1.0, 2.0 and 4.0 ng/kg per min. Each dose was infused for 20 min. Plasma 19-OH-A-dione rose significantly following the infusion of angiotensin II at a rate of 0.5 ng/kg per min and plasma 6 beta-OH-A-dione rose significantly following the infusion of angiotensin II at a rate of 1.0 ng/kg per min. In contrast, plasma aldosterone did not change significantly until the infusion rate reached 4.0 ng/kg per min. These results indicate that the secretion of 19-OH-A-dione and 6 beta-OH-A-dione is under the control of angiotensin II and the release of 19-OH-A-dione and 6 beta-OH-A-dione is induced earlier by the smaller doses of angiotensin II prior to the secretion of aldosterone. As 19-OH-A-dione and 6 beta-OH-A-dione amplify the action of aldosterone in bioassays using adrenalectomized rats and work as sodium-retaining and hypertensinogenic agents in intact rats, they are newly recognized biologically active steroids which are regulated by the renin-angiotensin system in man.  相似文献   

19.
Experiments were conducted to compare the blood pressure and heart rate responses of conscious rats given intracerebroventricular (ICV) injections of adrenocorticotropin (ACTH 1-24) and corticotropin releasing factor (CRF). Under sodium pentobarbital anaesthesia, rats were implanted with a stainless-steel cannula into the lateral cerebral ventricle and had their right femoral artery and vein cannulated. Upon recovery (24-48 hr later) conscious, unrestrained rats were given ICV injections (total volume 5 microliter by gravity flow) of sterile saline, ACTH (1-24) (0.85 and 1.7 nmoles) or CRF (0.55 and 1.1 nmoles) and blood pressure and heart rate were monitored over the next 2 hr (from the abdominal aorta via the femoral arterial catheter). Both ACTH and CRF caused mean arterial pressure (MAP) to increase, which was paralleled with increases in mean heart rate (MHR). Moreover, these elevations in MAP and MHR were temporally associated with excessive grooming (for ACTH) and locomotor activity (for CRF), which occurred before and lasted as long as MAP and MHR were enhanced. Intravenous (IV) pretreatment whereby naloxone was given 10 min before ICV administration of ACTH (1.7 nmoles) or CRF (1.1 nmoles), showed that naloxone blocked the behavioral, pressor and tachycardic effects of both ACTH and CRF. The results demonstrate that the pressor, tachycardic and locomotor effects evoked in conscious rats by ICV administration of ACTH or CRF are antagonized by naloxone and that their hemodynamic changes may, in part, be mediated by prior behavioral activation.  相似文献   

20.
Male Wistar rats were allowed to drink tap water ad lib (W), 2% saline (S) or 2% saline containing dexamethasone (S + D, 1 mg/l) for 7 days. On the 8th day rats were subjected to a 3-min ether stress. Plasma ACTH, corticosterone and prolactin concentrations were determined before and after ether exposure. Prestress concentrations of plasma ACTH were low and did not vary among the three groups. In response to ether stress W rats exhibited twice as high plasma ACTH concentrations as did S rats. Rats of the S + D group exhibited a small but statistically significant ACTH response. Plasma corticosterone concentration in S rats was increased while in S + D rats was significantly decreased under resting conditions compared to that in W rats. Ether stress caused large increases in plasma corticosterone concentrations in W and S rats while a small but statistically significant increase was observed in S + D rats. Prolactin responses to ether were smaller in groups S and S + D than in group W. To test whether the decreased ACTH response to ether exposure was a result of a decreased sensitivity of corticotrope cells to corticotropin releasing factor (CRF)-41 or arginine vasopressin (AVP), adenohypophysial fragments from W, S and S + D rats were incubated in the presence of different doses of CRF-41 or AVP. Pituitary fragments obtained from W rats secreted larger amounts of ACTH than did pituitaries from S rats in response to either CRF-41 or AVP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号