首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
DNA binding specificity of the wheat bZIP protein EmBP-1.   总被引:8,自引:0,他引:8       下载免费PDF全文
  相似文献   

3.
4.
Integration host factor (IHF) is a bacterial histone-like protein whose primary biological role is to condense the bacterial nucleoid and to constrain DNA supercoils. It does so by binding in a sequence-independent manner throughout the genome. However, unlike other structurally related bacterial histone-like proteins, IHF has evolved a sequence-dependent, high affinity DNA-binding motif. The high affinity binding sites are important for the regulation of a wide range of cellular processes. A remarkable feature of IHF is that it employs an indirect readout mechanism to bind and wrap DNA at both the nonspecific and high affinity (sequence-dependent) DNA sites. In this study we assessed the contributions of pre-formed and protein-induced DNA conformations to the energetics of IHF binding. Binding energies determined experimentally were compared with energies predicted for the IHF-induced deformation of the DNA helix (DNA deformation energy) in the IHF-DNA complex. Combinatorial sets of de novo DNA sequences were designed to systematically evaluate the influence of sequence-dependent structural characteristics of the conserved IHF recognition elements of the consensus DNA sequence. We show that IHF recognizes pre-formed conformational characteristics of the consensus DNA sequence at high affinity sites, whereas at all other sites relative affinity is determined by the deformational energy required for nearest-neighbor base pairs to adopt the DNA structure of the bound DNA-IHF complex.  相似文献   

5.
Purification of nuclear factor I by DNA recognition site affinity chromatography   总被引:107,自引:0,他引:107  
Nuclear factor I (NF-I) is a cellular protein that enhances the initiation of adenovirus DNA replication in vitro. The enhancement of initiation correlates with the ability of NF-I to bind a specific nucleotide sequence within the viral origin of replication. We have developed a method for the purification of NF-I which is based upon the high affinity interaction between the protein and its recognition site. This approach may be generally applicable to the purification of other site-specific DNA binding proteins. The essential feature of the method is a two-step column chromatographic procedure in which proteins are first fractionated on an affinity matrix consisting of nonspecific (Escherichia coli) DNA and then on a matrix that is highly enriched in the specific DNA sequence that is recognized by NF-I. During the first step NF-I coelutes with proteins that have similar general affinity for DNA. During the second step NF-I elutes at a much higher ionic strength than the contaminating nonspecific DNA binding proteins. The DNA recognition site affinity matrix used in the second step is prepared from a plasmid (pKB67-88) that contains 88 copies of the NF-I binding site. This plasmid was constructed by means of a novel cloning strategy that generates concatenated NF-I binding sites arranged exclusively in a direct head to tail configuration. Using this purification scheme, we have obtained a 2400-fold purification of NF-I from crude HeLa nuclear extract with a 57% recovery of specific DNA binding activity. Throughout the purification procedure NF-I retained the ability to enhance the efficiency of initiation of adenovirus DNA replication in vitro. Electrophoresis of the purified fraction on sodium dodecyl sulfate-polyacrylamide gels revealed a population of related polypeptides that ranged in apparent molecular weight from 66,000 to 52,000. The native molecular weight of NF-I deduced from gel filtration and glycerol sedimentation studies is 55,000 and the frictional ratio is 1.3. These results suggest that NF-I exists as a globular monomer in solution.  相似文献   

6.
We developed a general method for the enrichment and identification of sequence-specific DNA-binding proteins. A well-characterized protein-DNA interaction is used to isolate from crude cellular extracts or fractions thereof proteins which bind to specific DNA sequences; the method is based solely on this binding property of the proteins. The DNA sequence of interest, cloned adjacent to the lac operator DNA segment is incubated with a lac repressor-beta-galactosidase fusion protein which retains full operator and inducer binding properties. The DNA fragment bound to the lac repressor-beta-galactosidase fusion protein is precipitated by the addition of affinity-purified anti-beta-galactosidase immobilized on beads. This forms an affinity matrix for any proteins which might interact specifically with the DNA sequence cloned adjacent to the lac operator. When incubated with cellular extracts in the presence of excess competitor DNA, any protein(s) which specifically binds to the cloned DNA sequence of interest can be cleanly precipitated. When isopropyl-beta-D-thiogalactopyranoside is added, the lac repressor releases the bound DNA, and thus the protein-DNA complex consisting of the specific restriction fragment and any specific binding protein(s) is released, permitting the identification of the protein by standard biochemical techniques. We demonstrate the utility of this method with the lambda repressor, another well-characterized DNA-binding protein, as a model. In addition, with crude preparations of the yeast mitochondrial RNA polymerase, we identified a 70,000-molecular-weight peptide which binds specifically to the promoter region of the yeast mitochondrial 14S rRNA gene.  相似文献   

7.
8.
We describe a fast and simple one-step affinity-purification method for the isolation of specific RNA-binding proteins. An in vitro-transcribed hybrid RNA consisting of an aptamer sequence with high binding specificity to the antibiotic streptomycin and a putative protein-binding RNA sequence is incubated with crude extract. After complex formation, the sample is applied to an affinity column containing streptomycin immobilized to Sepharose. The binding of the in vitro-assembled RNA-protein complex to streptomycin-Sepharose is mediated by the aptamer RNA and the specifically bound proteins are recovered from the affinity matrix by elution with the antibiotic. Employing two well-characterized RNA-protein interactions, we tested the performance of this new method. The spliceosomal U1A protein and the bacteriophage MS2 coat protein could be isolated via their appropriate RNA motif containing hybrid RNA from crude yeast extracts in high yield and purity after only one round of affinity purification. As the purification principle is independent of the extract source, this new affinity chromatography strategy that makes use of an in vitro-selected antibiotic-binding RNA as a tag, "StreptoTag," should be applicable to extracts from other organisms as well. Therefore, we propose StreptoTag to be a versatile tool for the isolation of unknown RNA-binding proteins.  相似文献   

9.
The site-specific recombinase (Int) of bacteriophage lambda is a heterobivalent DNA-binding protein that binds two different classes of DNA-binding sites within its recombination target sites. The several functions of Int are apportioned between a large carboxy-terminal domain that cleaves and ligates DNA at each of its four "core-type" DNA-binding sites and a small amino-terminal domain, whose primary function is binding to each of its five "arm-type" DNA sites, which are distant from the core region. Int bridges between the two classes of binding sites are facilitated by accessory DNA-bending proteins that along with Int comprise higher-order recombinogenic complexes. We show here that although the 64 amino-terminal residues of Int bind efficiently to a single arm site, this protein cannot form doubly bound complexes on adjacent arm sites. However, 1-70 Int does show the same cooperative binding to adjacent arm sites as the full length protein. We also found that 1-70 Int specifies cooperative interactions with the accessory protein Xis when the two are bound to their adjacent cognate sites P2 and X1, respectively. To complement the finding that these two amino-terminal domain functions (along with arm DNA binding) are all specified by residues 1-70, we determined that Thr75 is the first residue of the minimal carboxy-terminal domain, thereby identifying a specific interdomain linker region. We have measured the affinity constants for Int binding to each of the five arm sites and the cooperativity factors for Int binding to the two pairs of adjacent arm sites, and we have identified several DNA structural features that contribute to the observed patterns of Int binding to arm sites. Taken together, the results highlight several interesting features of arm DNA binding that invite speculation about additional levels of complexity in the regulation of lambda site-specific recombination.  相似文献   

10.
11.
12.
C G Burd  G Dreyfuss 《The EMBO journal》1994,13(5):1197-1204
Pre-mRNA is processed as a large complex of pre-mRNA, snRNPs and pre-mRNA binding proteins (hnRNP proteins). The significance of hnRNP proteins in mRNA biogenesis is likely to be reflected in their RNA binding properties. We have determined the RNA binding specificity of hnRNP A1 and of each of its two RNA binding domains (RBDs), by selection/amplification from pools of random sequence RNA. Unique RNA molecules were selected by hnRNP A1 and each individual RBD, suggesting that the RNA binding specificity of hnRNP A1 is the result of both RBDs acting as a single RNA binding composite. Interestingly, the consensus high-affinity hnRNP A1 binding site, UAGGGA/U, resembles the consensus sequences of vertebrate 5' and 3' splice sites. The highest affinity 'winner' sequence for hnRNP A1 contained a duplication of this sequence separated by two nucleotides, and was bound by hnRNP A1 with an apparent dissociation constant of 1 x 10(-9) M. hnRNP A1 also bound other RNA sequences, including pre-mRNA splice sites and an intron-derived sequence, but with reduced affinities, demonstrating that hnRNP A1 binds different RNA sequences with a > 100-fold range of affinities. These experiments demonstrate that hnRNP A1 is a sequence-specific RNA binding protein. UV light-induced protein-RNA crosslinking in nuclear extracts demonstrated that an oligoribonucleotide containing the A1 winner sequence can be used as a specific affinity reagent for hnRNP A1 and an unidentified 50 kDa protein. We also show that this oligoribonucleotide, as well as two others containing 5' and 3' pre-mRNA splice sites, are potent inhibitors of in vitro pre-mRNA splicing.  相似文献   

13.
We have used three approaches to studying the interaction of lambda Int protein with bacteriophage attachment site DNA, POP': location of binding sites by retention of DNA fragments in a filter binding assay, reconstruction of a binding site by DNA synthesis and protection of a binding site from an exonuclease. Retention of restriction fragments on nitrocellulose filters in the presence of Int protein was used to locate binding sites. A high affinity binding site lies in P' between base pairs -6 and +173 from the center of the common core sequence, and low affinity sites are found in the 200 base pair region left of position -6. Reconstruction of the high affinity binding site region from the right using primed DNA synthesis and testing for filter binding in the presence of Int protein shows that sequences sufficient for tight binding of Int protein lie to the right of position +66. When attachment site DNA is protected by bound Int protein against digestion by exonuclease III, four Int dependent protection bands are seen in positions +58, +68, +79 and +88. This can be interpreted either as showing that four Int protein monomers bind to the high affinity region in series, or as evidence for wrapping of the DNA around Int protein, leading to structural changes resembling those occurring to DNA in nucleosomes.  相似文献   

14.
Although genome‐editing enzymes such as TALEN and CRISPR/Cas9 are being widely used, they have an essential limitation in that their relatively high‐molecular weight makes them difficult to be delivered to cells. To develop a novel genome‐editing enzyme with a smaller molecular weight, we focused on the engrailed homeodomain (EHD). We designed and constructed proteins composed of two EHDs connected by a linker to increase sequence specificity. In bacterial one‐hybrid assays and electrophoresis mobility shift assay analyses, the created proteins exhibited good affinity for DNA sequences consisting of two tandemly aligned EHD target sequences. However, they also bound to individual EHD targets. To avoid binding to single target sites, we introduced amino acid mutations to reduce the protein–DNA affinity of each EHD monomer and successfully created a small protein with high specificity for tandem EHD target sequences.  相似文献   

15.
Cytoplasmic DNA-binding proteins   总被引:1,自引:0,他引:1  
Cytoplasmic DNA-binding proteins were isolated from Chinese hamster liver, kidney and tissue culture cells by DNA-polyacrylamide chromatography. With homologous Chinese hamster DNA, and with calf thymus DNA, 1.4% of the proteins were bound to the column. With single-stranded DNA and with heterologous Micrococcus lysodeikticus DNA there was only 0.3% binding, suggesting the proteins preferentially bind to double-stranded DNA and show some sequence specificity. By a nitrocellulose filter assay the bound proteins had at least a 4- to 7-fold greater affinity for DNA than bulk cytoplasmic protein. SDS gel electrophoresis showed that specific proteins were being markedly concentrated by the column and it was primarily the high molecular weight proteins of 65 000 D and over which showed sequence specificity. Some proteins appeared in common with different organs, others were unique. These studies thus define a group of high molecular weight, cytoplasmic proteins which bind to native DNA with a degree of sequence specificity. Their possible relationship to gene regulation is discussed.  相似文献   

16.
17.
Synthesis of an estrogen affinity adsorbent containing a disulfide linkage between the steroid and stationary matrix permitted facile purification of high affinity estrogen binding proteins. Following affinity chromatography of either antibody directed against estrone 17-carboxymethyloxime — bovine serum albumin or immature calf uterine cytoplasmic estrogen receptor proteins, the specifically bound protein was recovered by incubating the adsorbent with 2-mercaptoethanol. Crude antibody and uterine cytosol was prepared for affinity chromatography in buffer containing 10?3 to 10?2M cystamine (S-S) to block SH-containing proteins, in order to protect the adsorbent against protein-mediated S-S ag SH exchange. Cystamine was found to markedly stabilize crude cytosol receptor protein by 200–300% compared with preparations obtained under ordinary conditions. Disulfide affinity adsorbents are versatile in that they can be used either under conventional conditions of specific protein recovery, or with 2-mercaptoethanol which removes the ligand and bound protein from the stationary matrix quantitatively.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号