首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied the effect of several chemical modifications to low-density lipoprotein (LDL) on its intracellular fate in macrophages. Native, acetylated and oxidized 125I-LDL were supplied to cultured peritoneal macrophages and the accumulation and distribution of labelled protein was measured both during uptake and a subsequent chase period. The intracellular accumulation of macromolecular oxidized LDL protein greatly exceeded that of acetylated LDL, despite similar rates of uptake and common endocytic receptors. The accumulation of intracellular apoprotein was proportional to the extent to which the LDL was first oxidized. ApoB of oxidized LDL was more resistant to proteolysis by lysosomal enzymes than native apoB. Interestingly, acetylated apoB is more rapidly hydrolysed than the native protein. 125I-LDL modified with 4-hydroxynonenal (HNE) and myricetin, but not with malondialdehyde (MDA), was also accumulated within macrophages in a high-molecular weight fraction, and was resistant to cell-free lysosomal proteolysis. These forms of LDL also contained crosslinked apoB molecules. It is suggested that the accumulation of oxidized LDL within macrophages may he due, at least in part, to the formation of inter- or intra-molecular crosslinks in apoB which render it less accessible to proteolysis.  相似文献   

2.

Background

Epidemiologic studies indirectly suggest that air pollution accelerates atherosclerosis. We hypothesized that individual exposure to particulate matter (PM) derived from fossil fuel would correlate with plasma concentrations of oxidized low-density lipoprotein (LDL), taken as a marker of atherosclerosis. We tested this hypothesis in patients with diabetes, who are at high risk for atherosclerosis.

Methodology/Principal Findings

In a cross-sectional study of non-smoking adult outpatients with diabetes we assessed individual chronic exposure to PM by measuring the area occupied by carbon in airway macrophages, collected by sputum induction and by determining the distance from the patient''s residence to a major road, through geocoding. These exposure indices were regressed against plasma concentrations of oxidized LDL, von Willebrand factor and plasminogen activator inhibitor 1 (PAI-1). We could assess the carbon load of airway macrophages in 79 subjects (58 percent). Each doubling in the distance of residence from major roads was associated with a 0.027 µm2 decrease (95% confidence interval (CI): −0.048 to −0.0051) in the carbon load of airway macrophages. Independently from other covariates, we found that each increase of 0.25 µm2 [interquartile range (IQR)] in carbon load was associated with an increase of 7.3 U/L (95% CI: 1.3 to 13.3) in plasma oxidized LDL. Each doubling in distance of residence from major roads was associated with a decrease of −2.9 U/L (95% CI: −5.2 to −0.72) in oxidized LDL. Neither the carbon load of macrophages nor the distance from residence to major roads, were associated with plasma von Willebrand factor or PAI-1.

Conclusions

The observed positive association, in a susceptible group of the general population, between plasma oxidized LDL levels and either the carbon load of airway macrophages or the proximity of the subject''s residence to busy roads suggests a proatherogenic effect of traffic air pollution.  相似文献   

3.
In J774 murine macrophages, chemically oxidized LDL (OxLDL) and biologically oxidized LDL (BioOxLDL) have similar metabolic fates, characterized by a relatively poor degradation when compared with acetylated LDL (AcLDL), and a modest ability to activate acyl-CoA:cholesterol acyltransferase (ACAT) (850 and 754 pmol [14C]oleate/mg cell protein in OxLDL- and BioOxLDL-incubated cells, versus 425 and 7070 pmol [14C]cholesteryl oleate/mg cell protein in control and AcLDL-incubated cells) with a massive increase of cellular free cholesterol. Therefore, OxLDL were used to investigate the cellular processing of oxidatively modified LDL. Binding and fluorescence microscopy studies demonstrated that OxLDL are effectively bound and internalized by macrophages and accumulate in organelles with density properties similar to those of endo/lysosomes. Although the overall metabolism of OxLDL is modestly affected by 100 microM chloroquine, owing to the poor cellular degradation of the substrate, the drug can further depress OxLDL degradation, indicating that this process takes place in an acidic compartment. Failure to detect products of extensive degradation of OxLDL in the medium is due to their relative resistance to enzymatic hydrolysis, as demonstrated also by in vitro experiments with partially purified lysosomal enzymes, rather than to the intracellular accumulation of degradation products (degraded intracellular protein is, at most, 8.5% of total). This sluggish degradation process is not due to a cytotoxic effect since OxLDL do not affect the intracellular processing of other ligands like AcLDL or IgG. The accumulation of OxLDL-derived products within macrophages may elicit cellular responses, the relevance of which in the atherosclerotic process remains to be addressed.  相似文献   

4.
Scavenger receptor-mediated uptake of oxidized LDL (oxLDL) is thought to be the major mechanism of foam cell generation in atherosclerotic lesions. Recent data has indicated that native LDL is also capable of contributing to foam cell formation via low-affinity receptor-independent LDL particle pinocytosis and selective cholesteryl ester (CE) uptake. In the current investigation, Cu2+-induced LDL oxidation was found to inhibit macrophage selective CE uptake. Impairment of selective CE uptake was significant with LDL oxidized for as little as 30 min and correlated with oxidative fragmentation of apoB. In contrast, LDL aggregation, LDL CE oxidation, and the enhancement of scavenger receptor-mediated LDL particle uptake required at least 3 h of oxidation. Selective CE uptake did not require expression of the LDL receptor (LDL-R) and was inhibited similarly by LDL oxidation in LDL-R−/− versus WT macrophages. Inhibition of selective uptake was also observed when cells were pretreated or cotreated with minimally oxidized LDL, indicating a direct inhibitory effect of this oxLDL on macrophages. Consistent with the effect on LDL CE uptake, minimal LDL oxidation almost completely prevented LDL-induced foam cell formation. These data demonstrate a novel inhibitory effect of mildly oxidized LDL that may reduce foam cell formation in atherosclerosis.  相似文献   

5.
The rate of uptake of oxidized low density lipoprotein (LDL) by mouse peritoneal macrophages is similar to that of acetyl LDL; but only approximately 50% of the internalized oxidized LDL is ultimately degraded, in contrast to the near-complete degradation seen with acetyl LDL. The objectives of this study were to determine if this was due to increased surface binding of oxidized LDL, different uptake pathways for oxidized LDL and acetyl LDL, lysosomal dysfunction caused by oxidized LDL, or resistance of oxidized LDL to hydrolysis by lysosomal proteinases. LDL binding studies at 4 degrees C showed that the increased cell association with oxidized LDL could not be explained by differences in cell-surface binding. Immunofluorescence microscopy confirmed intracellular accumulation of apoB-immunoreactive material in macrophages incubated with oxidized LDL, but not with acetyl LDL. The scavenger receptor ligand polyinosinic acid inhibited both the cell association and degradation of oxidized LDL in macrophages by greater than 75%, suggesting a common uptake pathway for degraded LDL and nondegraded LDL. Studies in THP-1 cells also did not reveal more than one specific uptake pathway for oxidized LDL. LDL derivatized by incubation with oxidized arachidonic acid (under conditions that prevented oxidation of the LDL itself) showed inefficient degradation, similar to oxidized LDL. When macrophages were incubated with oxidized LDL together with acetyl 125I-LDL, the acetyl LDL was degraded normally, excluding lysosomal dysfunction as the explanation for the accumulation of oxidized LDL. Generation of trichloroacetic acid-soluble products from oxidized 125I-LDL by exposure to cathepsins B and D was less than that observed with native 125I-LDL. LDL modified by exposure to reactive products derived from oxidized arachidonic acid was also degraded more slowly than native 125I-LDL by cathepsins. In contrast, acetyl 125I-LDL was degraded more rapidly by cathepsins than native 125I-LDL, and aggregated LDL and malondialdehyde-modified LDL were degraded at the same rate as native 125I-LDL. It is concluded that the intracellular accumulation of oxidized LDL in macrophages can be explained at least in part by the resistance of oxidatively modified apolipoprotein B to cathepsins. This resistance to cathepsins does not appear to be due to aggregation of oxidized LDL, but may be a consequence of modification of apolipoprotein B by lipid peroxidation products.  相似文献   

6.
The formation of cholesterol-loaded macrophage foam cells in arterial tissue may occur by the uptake of modified lipoproteins via the scavenger receptor pathway. The macrophage scavenger receptor, also called the acetylated low density lipoprotein (Ac-LDL) receptor, has been reported to recognize Ac-LDL as well as oxidized LDL species such as endothelial cell-modified LDL (EC-LDL). We now report that there is another class of macrophage receptors that recognizes EC-LDL but not Ac-LDL. We performed assays of 0 degrees C binding and 37 degrees C degradation of 125I-Ac-LDL and 125I-EC-LDL by mouse peritoneal macrophages. Competition studies showed that unlabeled Ac-LDL could compete for only 25% of the binding and only 50% of the degradation of 125I-EC-LDL. Unlabeled EC-LDL, however, competed for greater than 90% of 125I-EC-LDL binding and degradation. Unlabeled Ac-LDL was greater than 90% effective against 125I-Ac-LDL; EC-LDL competed for about 80% of 125I-Ac-LDL binding and degradation. Copper-oxidized LDL behaved the same as EC-LDL in all the competition studies. Copper-mediated oxidation of Ac-LDL produced a superior competitor which could now displace 90% of 125I-EC-LDL binding. After 5 h at 37 degrees C in the presence of ligand, macrophages accumulated six times more cell-associated radioactivity from 125I-EC-LDL than from 125I-Ac-LDL, despite approximately equal amounts of degradation to trichloroacetic acid-soluble products, which may imply different intracellular processing of the two lipoproteins. Our results suggest that 1) there is more than one macrophage "scavenger receptor" for modified lipoproteins; and 2) oxidized LDL and Ac-LDL are not identical ligands with respect to macrophage recognition and uptake.  相似文献   

7.
Low-density lipoprotein (LDL) and its oxidized derivatives are hypothesized to impair vascular function by increasing superoxide anion (O.). To investigate mechanisms in situ, isolated carotid arteries were incubated with native LDL (nLDL) or minimally oxidized LDL (mmLDL). With the use of en face fluorescent confocal microscopy and hydroethidine, an oxidant-sensitive fluorescent probe, we found that nLDL increased O. in vascular endothelium greater than fourfold by an N(omega)-nitro-L-arginine methyl ester (L-NAME)-inhibitable mechanism. In contrast, mmLDL increased O. in vascular endothelium greater than eightfold by mechanisms that were partially inhibited by L-NAME and allopurinol and essentially ablated by diphenyleneiodium. These data indicate that both nLDL and mmLDL uncouple endothelial nitric oxide synthase (eNOS) activity and that mmLDL also activates xanthine oxidase and NADPH oxidoreductase to induce greater increases in O. generation than nLDL. Western analysis revealed that both lipoproteins inhibited A-23187-stimulated association of heat shock protein 90 (HSP90) with eNOS without inhibiting phosphorylation of eNOS at serine-1179 (phospho-eNOS), an immunological index of electron flow through the enzyme. As HSP90 mediates the balance of.NO and O. generation by eNOS, these data provide new insight into the mechanisms by which oxidative stress, induced by nLDL and mmLDL, uncouple eNOS activity to increase endothelial O. generation.  相似文献   

8.
The amino-carbonyl (Maillard) reaction of amino acids with sugars is a nonenzymatic browning reaction that takes place during the processing, cooking, and storage of foods. Maillard reaction products (MRPs) have been shown to possess interesting chemical and biological properties including antimutagenic and antioxidant activity. In this study, we determined the antioxidant effects of fructosyl arginine (Fru-Arg), a MRP in aged garlic extract. Low density lipoprotein (LDL) was incubated with Cu(2+) at 37 degrees C and 5% CO(2) for 24 hours, which resulted in an increase of thiobarbituric acid reactive substances (TBARS) indicating lipid peroxidation. Coincubation of Cu(2+) with Fru-Arg and LDL resulted in a significant inhibition of TBARS formation. Pulmonary artery endothelial cells (PAEC) were exposed to 0.1 mg/mL oxidized LDL (Ox-LDL) at 37 degrees C and 5% CO(2) for 24 hours. Lactate dehydrogenase (LDH) release, as an index of cell membrane damage, and TBARS were measured. Ox-LDL caused an increase of LDH release and TBARS formation. Pretreatment of PAEC with Fru-Arg inhibited these changes. Murine macrophages were incubated with Ox-LDL, and the release of peroxides was measured using a fluorometric assay. Ox-LDL caused an increased release of peroxides. Coincubation of macrophages with Fru-Arg and Ox-LDL inhibited the release of peroxides dose-dependently. In a cell free system, Fru-Arg was shown to scavenge hydrogen peroxide. These data suggest that Fru-Arg is a potent antioxidant, and thus may be useful for the prevention of atherosclerosis and other disorders associated with oxidative stress.  相似文献   

9.
Nanoscale particles could be synthetically designed to potentially intervene in lipoprotein matrix retention and lipoprotein uptake in cells, processes central to atherosclerosis. We recently reported on lipoprotein interactions of nanoscale micelles self-assembled from amphiphilic scorpion-like macromolecules based on a lauryl chloride-mucic acid hydrophobic backbone and poly(ethylene glycol) shell. These micelles can be engineered to present varying levels of anionic chemistry, a key mechanism to induce differential retentivity of low-density lipoproteins (LDL) (Chnari, E.; Lari, H. B.; Tian, L.; Uhrich, K. E.; Moghe, P. V. Biomaterials 2005, 26, 3749). In this study, we examined the cellular interactions and the ability of carboxylate-terminated nanoparticles to modulate cellular uptake of differentially oxidized LDL. The nanoparticles were found to be highly biocompatible with cultured IC21 macrophages at all concentrations examined. When the nanoparticles as well as LDL were incubated with the cells over 24 h, a marked reduction in cellular uptake of LDL was observed in a nanoparticle concentration-dependent manner. Intermediate concentrations of nanoparticles (10(-6) M) elicited the most charge-specific reduction in uptake, as indicated by the difference in uptake due to anionic and uncharged nanoparticles. At these concentrations, anionic nanoparticles reduced LDL uptake for all degrees of oxidation (no oxidation, mild, high) of LDL, albeit with qualitative differences in the effects. The anionic nanoparticles were particularly effective at reducing the very high levels of uptake of the most oxidized level of LDL. Since complexation of LDL with anionic nanoparticles is reduced at higher degrees of LDL oxidation, our results suggest that anionic nanoparticles interfere in highly oxidized (hox) LDL uptake, likely by targeting cellular/receptor uptake mechanism, but control unoxidized LDL uptake by mechanisms related to direct LDL-nanoparticle complexation. Thus, anionically functionalized nanoparticles can modulate the otherwise unregulated internalization of differentially oxidized LDL.  相似文献   

10.
In the present study, we isolated modified LCAT (m-LCAT) by hydroxyapatite column chromatography after incubation of crude LCAT (after DEAE SephadexA-50 column chromatography, penultimate step of LCAT purification) with oxidized LDL (oxLDL) at 37 degrees C for 1 h. The activity was found to be about 30% lower than that of native LCAT (n-LCAT). When activity was determined in the presence of oxLDL, m-LCAT was less inhibited than n-LCAT by oxLDL. Treatments of purified LCAT either at 56 degrees C for 30 min, at 100 degrees C for 10 min, or with 6 mM 5-5' -dithiobis-2-nitrobenzoic acid or 9 mM diisopropyl fluorophosphates (each at 37 degrees C for 30 min) resulted in the loss of its cholesterol-esterifying activity. When examined for their ability to detoxify oxLDL, native LCAT and LCAT treated at 56 degrees C for 30 min were found to detoxify oxLDL. These results indicate that oxidation product(s) of LDL is transferred and bound to LCAT in a way that does not depend on its cholesterol-esterifying activity, but rather on the availability of the sulfhydryl group of cysteine residue and the hydroxyl group of serine residue.  相似文献   

11.
Human macrophages stimulated with interferon-γ generate neopterin and 7,8-dihydroneopterin which interfere with reactive species involved in LDL oxidation. While neopterin was found to have pro-oxidative effects on copper-mediated LDL oxidation, the influence of 7,8-dihydroneopterin is more complex. This study provides detailed information that 7,8-dihydroneopterin reveals both pro-oxidative and anti-oxidative effects on copper mediated LDL oxidation. 7,8-dihydroneopterin inhibited the oxidation of native LDL effectively monitored by (i) formation of conjugated dienes, (ii) relative electrophoretic mobility (EM) and (iii) specific oxidized epitopes. Using minimally oxidized LDL (mi-LDL) or moderately oxidized LDL (mo-LDL) 7,8-dihydroneopterin changed its antioxidative behavior to a strongly pro-oxidative. Incubation of 7,8-dihydroneopterin with native LDL, mi-LDL or mo-LDL in the absence of copper ions showed that formation of conjugated dienes was more increased in mo-LDL than in mi-LDL while no diene formation was observed with native LDL.

We suggest that 7,8-dihydroneopterin is a modulator for LDL oxidation in the presence of copper ions depending on the “oxidative status” of this lipoprotein.  相似文献   

12.
Oxidatively modified low-density lipoproteins (Ox-LDL) and complement anaphylatoxins C3a and C5a are colocalized in atherosclerotic lesions. Anaphylatoxin C3a also binds and breaks bacterial lipid membranes and phosphatidylcholine liposomes. The role of oxidized lipid adducts in C3a binding to Ox-LDL and apoptotic cells was investigated. Recombinant human C3a bound specifically to low-density lipoprotein and bovine serum albumin modified with malondialdehyde (MDA) and malondialdehyde acetaldehyde (MAA) in chemiluminescence immunoassays. No binding was observed to native proteins, LDL oxidized with copper ions (CuOx-LDL), or phosphocholine. C3a binding to MAA-LDL was inhibited by two monoclonal antibodies specific for MAA-LDL. On agarose gel electrophoresis, C3a comigrated with MDA-LDL and MAA-LDL, but not with native LDL or CuOx-LDL. C3a bound to apoptotic cells in flow cytometry. C3a opsonized MAA-LDL and was taken up by J774A.1 macrophages in immunofluorescence analysis. Complement-activated human serum samples (n=30) showed increased C3a binding to MAA-LDL (P<0.001) and MDA-LDL (P<0.001) compared to nonactivated samples. The amount of C3a bound to MAA-LDL was associated with total complement activity, C3a desArg concentration, and IgG antibody levels to MAA-LDL. Proteins containing MDA adducts or MAA adducts may bind C3a in vivo and contribute to inflammatory processes involving activation of the complement system in atherosclerosis.  相似文献   

13.
Lack of a direct role for macrosialin in oxidized LDL metabolism   总被引:2,自引:0,他引:2  
Murine macrosialin (MS), a scavenger receptor family member, is a heavily glycosylated transmembrane protein expressed predominantly in macrophage late endosomes. MS is also found on the cell surface where it is suggested, on the basis of ligand blotting, to bind oxidized LDL (oxLDL). Here we report on the regulation of MS by an atherogenic high-fat diet and oxLDL, and on the inability of MS in transfected cells to bind oxLDL. MS expression was markedly increased in the livers of atherosclerosis-susceptible C57BL/6 and atherosclerosis-resistant C3H/HeJ mice fed an atherogenic high-fat diet. In resident-mouse peritoneal macrophages, treatment with oxLDL upregulated MS mRNA and protein expression 1.5- to 3-fold. MS, overexpressed in COS-7 cells through adenovirus mediated gene transfer, bound oxLDL by ligand blotting. However, no binding of oxLDL to MS was observed in intact transfected COS-7 and Chinese hamster ovary cells, despite significant cell surface expression of MS. Furthermore, inhibition of MS through gene silencing did not affect the binding of oxLDL to macrophages. We conclude that although MS expression in macrophages and Kupffer cells is responsive to a proatherogenic inflammatory diet and to oxLDL, MS does not function as an oxLDL receptor on the cell surface.  相似文献   

14.
The apoA-I mimetic peptide L-4F [(Ac-D-W-F-K-A-F-Y-D-K-V-A-E-K-F-K-E-A-F-NH2) synthesized from all L-amino acids] has shown potential for the treatment of a variety of diseases. Here, we demonstrate that LDL promotes association between L-4F and HDL. A 2- to 3-fold greater association of L-4F with human HDL was observed in the presence of human LDL as compared with HDL by itself. This association further increased when LDL was supplemented with the oxidized lipid 15S-hydroxy-5Z, 8Z, 11Z, 13E-eicosatetraenoic acid (15HETE). Additionally, L-4F significantly (P = 0.02) promoted the transfer of 15HETE from LDL to HDL. The transfer of L-4F from LDL to HDL was demonstrated both in vitro and in C57BL/6J mice. L-4F, injected into C57BL/6J mice, associated rapidly with HDL and was then cleared quickly from the circulation. Similarly, L-4F loaded onto human HDL and injected into C57BL/6J mice was cleared quickly with T(1/2) = 23.6 min. This was accompanied by a decline in human apoA-I with little or no effect on the mouse apoA-I. Based on these results, we propose that i) LDL promotes the association of L-4F with HDL and ii) in the presence of L-4F, oxidized lipids in LDL are rapidly transferred to HDL allowing these oxidized lipids to be acted upon by HDL-associated enzymes and/or cleared from the circulation.  相似文献   

15.
Metabolism of oxidized LDL by macrophages   总被引:2,自引:0,他引:2  
Oxidation products of lipids and proteins are found in atherosclerotic plaque and in macrophage foam cells. Macrophages avidly endocytose in-vitro oxidized LDL and accumulate sterols. What is the evidence that such a process is involved in in-vivo foam cell formation? The present review surveys current knowledge on the metabolism of oxidized LDL by macrophages, and the types, amounts and location of oxidation products that accumulate in these cells. Comparable studies of lesion lipoproteins and foam cells indicate that limited extracellular lipoprotein oxidation, perhaps followed by more extensive intracellular oxidation subsequent to uptake by macrophages, is a more likely scenario in vivo.  相似文献   

16.
Oxidatively modified low-density lipoprotein (LDL) has been found in vivo, and oxidized LDL (oxLDL) could bind to scavenger receptors, leading to foam cell formation. Macrophages bear a number of different scavenger receptors for oxLDL, and macrophages of different origins may have a different scavenger receptor repertoire. In addition, LDL oxidized to different degrees may differ in the ability to bind macrophage scavenger receptors. In this study, we characterized the patterns of the binding and uptake of differently oxidized LDL in mouse peritoneal macrophages (MPM) and human THP-1 macrophages, and the influence of negative charge and oxidation-specific epitopes in oxLDL on these processes. Thresholds of increased binding and uptake in MPM were found when LDL was oxidized to the degrees with a relative electrophoretic mobility (REM) of 2.6 (minor threshold) and 3.0 (major threshold), corresponding to 49 and 57%, respectively, of the loss of free amino groups in these oxLDL. There was no threshold for the binding of oxLDL to THP-1 macrophages, while for uptake, a major threshold with REM of 3.0 (57% free amino groups lost) was found. The presence of the F(ab')(2) fragments of the monoclonal antibody OB/04, which was raised against copper-oxidized LDL, led to the reduction of the binding and uptake, respectively, of Eu(3+)-oxLDL (REM:3.6) in MPM by 31 and 29%, and by 19 and 22% in THP-1 macrophages. It is concluded that LDL oxidized to different degrees binds differently to macrophages, and the patterns of binding and uptake are different for MPM and human THP-1 macrophages. Both, the negative charge and the oxidation-specific epitopes of oxLDL are involved in these processes.  相似文献   

17.
The possible effect of oxidized HDL was investigated on lymphoblastoid cells, in comparison to the cytotoxic effect of oxidized LDL. Oxidation of HDL was promoted by UV-C irradiation, or by copper ion (5 microM) or the combination of the two treatments. HDL extensively treated by UV-C for 20 h did not exhibit any cytotoxic effect on cultured lymphoblastoid cells even at a concentration of 500 micrograms apolipoprotein A-I/ml. In contrast to UV-treated (2 h) LDL, which were highly cytotoxic (already at a concentration of 100 micrograms apolipoprotein B/ml), HDL treated by copper or copper + UV were oxidized, as shown by TBARS formation and PUFA content decrease, but were slightly cytotoxic.  相似文献   

18.
Well-known coronary risk factors such as hyperlipidemia, hypertension, smoking, and diabetes are reported to induce the oxidative stress. Under the oxidative stress, low-density lipoprotein (LDL) is oxidatively modified in the vasculature, and formed oxidized LDL induces endothelial dysfunction, expression of adhesion molecules and apoptosis of vascular smooth muscle cells. It has become evident that these cellular responses induced by oxidized LDL are mediated by lectin-like oxidized LDL receptor-1 (LOX-1). LOX-1 was originally identified from cultured aortic endothelial cells as a receptor for oxidized LDL; however, recent investigations revealed that LOX-1 has diverse roles in the host-defense system and inflammatory responses, and it is involved in the pathogenesis of various diseases such as atherosclerosis-based cardiovascular diseases and septic shock. Beside oxidized LDL, LOX-1 recognizes multiple ligands including apoptotic cells, platelets, advanced glycation end products, bacteria, and heat shock proteins (HSPs). The HSPs function as a chaperone to affect protein folding of newly synthesized or denatured proteins. There are accumulating evidences that the HSPs released into the extracellular space have potent biological activities and it may work as a kind of cytokines. It is demonstrated that LOX-1 works as a receptor for HSP70, since it has high affinity for HSP70. The interaction of LOX-1 with HSP70 is involved in the cross-presentation of antigen. Given the potent and wide variety of biological activities, more understanding their interaction provides potential therapeutic strategy for various human diseases.  相似文献   

19.
20.
Oxidation of low density lipoproteins (LDL) induced by incubation with Cu(2+) ions results in the formation of a heterogeneous group of aldehydic adducts on lysyl residues (Lys) of apolipoprotein B (apoB) that are thought to be responsible for the uptake of oxidized LDL (oxLDL) by macrophages. To define the structural and chemical criteria governing such cell recognition, we induced two modifications of lysines in LDL that mimic prototypic adducts present in oxLDL; namely, epsilon-amino charge-neutralizing pyrrolation by treatment with 2,5-hexanedione (hdLDL), and epsilon-amino charge-retaining pyridinium formation via treatment with 2,4,6-trimethylpyrylium (tmpLDL). Both modifications led to recognition by receptors on mouse peritoneal macrophages (MPM). To assess whether the murine scavenger receptor class A-I (mSR-A) was responsible for recognition of hdLDL or tmpLDL in MPM, we measured binding at 4 degrees C and degradation at 37 degrees C of these modified forms of (125)I-labeled LDL by mSR-A-transfected CHO cells. Although uptake and degradation of hdLDL by mSR-A-transfected CHO cells was quantitatively similar to that of the positive control, acLDL, tmpLDL was not recognized by these cells. However, both tmpLDL and hdLDL were recognized by 293 cells that had been transfected with CD36. In the human monocytic cell line THP-1 that had been activated with PMA, uptake of tmpLDL was significantly inhibited by blocking monoclonal antibodies to CD36, further suggesting recognition of tmpLDL by this receptor. Macrophage uptake and degradation of LDL oxidized by brief exposure to Cu(2+) was inhibited more effectively by excess tmpLDL and hdLDL than was more extensively oxidized LDL, consistent with the recognition of the former by CD36 and the latter primarily by SR-A.Collectively, these studies suggest that formation of specific pyrrole adducts on LDL leads to recognition by both the mSR-A and mouse homolog of CD36 expressed on MPM, while formation of specific pyridinium adducts on LDL leads to recognition by the mouse homolog of CD 36 but not by mSR-A. As such, these two modifications of LDL may represent useful models for dissecting the relative contributions of specific modifications on LDL produced during oxidation, to the cellular uptake of this heterogeneous ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号