首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A greenhouse study compared the effect of soil P-fixing capacity on the relative argonomic effectiveness (RAE) of partially acidulated phosphate rock (PAPR) and water-soluble P. Such information is lacking in the literature. Six soils varying widely in P-fixing capacity (5.6%–56.1%) were used. A phosphate rock (Huila PR) from Colombia was acidulated with H2SO4 at 50% of the level necessary to achieve full conversion to single superphosphate (SSP). Rates of P applied from PAPR or SSP were 0,05, 100, and 300 mg P kg−1. The P fertilizers were mixed with the soils, and maize was grown for 6 weeks before harvest. The results show that the effectiveness of PAPR in increasing dry-matter yield and P uptake over yield and uptake obtained with SSP linearly increased as the soil P-fixing capacity increased. PAPR and SSP were equally effective in increasing dry-matter yield or P uptake at P-fixing capacities of 28% or 36%, respectively. PAPR was found to be more effective than SSP in soils (treated with Fe-gel) with P-fixing capacity higher than these values. The internal efficiency, which is defined as the ratio between dry-matter yield and P uptake, was the same for both PAPR and SSP in all the soils.  相似文献   

2.
Iretskaya  S.N.  Chien  S.H.  Menon  R.G. 《Plant and Soil》1998,201(2):183-188
Little information is available in literature on Cd uptake by crops from either phosphate rock (PR) or partially acidulated PR (PAPR). The purpose of this greenhouse experiment was to study the effect of acidulation of two PRs having high Cd content (highly reactive North Carolina PR and low-reactive Togo PR) on Cd uptake by upland rice. The degrees of acidulation with H2SO4 were 100% for North Carolina PR (NC-single superphosphate [SSP]) and 50% or 100% for Togo-PR (i.e., Togo PAPR or Togo-SSP). Separation of the confounding effect between P uptake and Cd uptake from various P sources was made by adding 200 mg P/kg as KH2PO4 to all the treatments. Rates of Cd added from various P sources were 50–400 µg Cd/kg. Upland rice (Oryza sativa L.) was grown on two acid soils (Hartsells, pH 5.0 and Waverly, pH 5.6) to maturity.The results show that Cd uptake by rice grains followed the order of NC-SSP> NC-PR and Togo SSP> Togo PAPR> Togo PR. The results also showed that most of the Cd uptake was retained in rice roots and straw. Total uptake of Cd, Ca, and P by rice plant (root, straw, and grain) was higher from NC-PR than from Togo-PR. Cd concentration in rice grains showed no significant difference between NC-PR and Togo-PR, whereas Cd concentrations in root and straw were higher with NC-PR than that with Togo-PR. There was a significant relationship between total Cd uptake by rice plant and Cd extracted by DTPA from soils treated with various P sources at 400 µg Cd/kg.  相似文献   

3.
Field studies were conducted in Niger using 15N-labeled fertilizers to assess the fate and efficiency of fertilizer N in pearl millet (Pennisetum glaucum [L.] R.Br.) production. Total plant uptake of fertilizer N was low in all cases (20%–37%), and losses were severe (25%–53%). The majority of N remaining in the soil was found in the 0- to 15-cm layer though some enrichment at lower depths was found when the N fertilizer was calcium ammonium nitrate (CAN). In a comparison of urea placement methods (band, broadcast, or point placement), no significant differences in 15N uptake or yield were noted though point placement did exacerbate 15N loss. The mechanism of N loss is believed to have been ammonia volatilization. Yields were similar whether urea or CAN was used, but 15N uptake from CAN was higher. A statistical model was developed relating millet yield and N response to midseason rainfall. In drought years, no N response was found, whereas in years of good rainfall a response was found of 15 kg grain for each kilogram of N applied (at 30 kg N ha-1 rate).  相似文献   

4.
A total of 36 fungal species isolated from soil were tested for their ability to solubilize rock phosphate (RP) in agar plates. Most of these fungi were non-rock phosphate solubilizers, but two isolates, Aspergillus niger and Penicillium citrinum, had high activity. Liquid culture experiments revealed that both fungi caused a remarkable drop in pH of culture media and solubilized considerable amounts of phosphate. The effects on wheat of inoculation with vesicular–arbuscular mycorrhizal fungi and rock-phosphate-solubilizing fungi and fertilization with rock phosphate were studied in sterilized pot soils, nonsterilized pot trials and in field plot soils. Rock phosphate fertilization and inoculation with Glomus constrictum and rock-phosphate-solubilizing fungi (A. niger and P. citrinum) significantly increased dry matter yield of wheat plants under all experimental conditions. However, the effect was more evident in non- sterilized pot soils and in the field than in sterilized pots. Rock phosphate had no significant effect on the total phosphorus content of plants grown under pot conditions but it was significantly increased in field plots; the effect of inoculation with fungi (G. constrictum, A. niger and P. citrinum) on plant phosphorus was closely related to this in dry matter production. The greatest positive effect on growth and phosphorus contents of wheat plants was recorded in the treatments that received rock phosphate and were inoculated with a mixed inoculum of the three microorganisms used, followed by dual inoculation treatments of G. constrictum plus either A. niger or P. citrinum.  相似文献   

5.
Phosphate-solubilizing bacteria (PSB) exhibited a high efficiency to improve plant growth and nutrition in the presence of Bayovar rock phosphate when sand-vermiculive was used as a culture medium. Treatments with dual inoculum (PSB plus mycorrhiza) significantly (P≤0.05) increased alfalfa growth. Bacteria-microbial fungi interactions resulted in a greater utilization of the rock phosphate added to the rooting medium. Although Bayovar rock phosphateper se can be considered an inert substrate because it did not stimulate plant growth, metabolites released by PSB were able to transform the rock into available forms which could be utilized by alfalfa plants.Glomus fasciculatum was the most efficient mycorrhizal endophyte under the experimental conditions employed.  相似文献   

6.
A citric acid-producing strain of Aspergillus niger, grown on olive cake-based medium, was able to solubilize rock phosphate. Solubilization of insoluble phosphate increased during the solid-state fermentation process, reaching a maximum of 164g/ml. Various combinations of olive cake and rock phosphate, previously treated or untreated by the fungus, were introduced into a calcareous, phosphorus (P)-deficient soil to improve the growth of Trifolium repens in a greenhouse experiment. Synergistic action of both the filamentous and arbuscular fungi caused considerable improvement of growth and plant P uptake. Greater growth and P uptake of mycorrhizal and non-mycorrhizal plants were achieved when microbe-treated olive cake and rock phosphate were applied to soil compared with all other treatments.  相似文献   

7.
Abstract

Phosphorus (P) is one of the most important minerals required for plant growth occupying a strong position among soil macro nutrients. Soil P deficiency is often fulfilled by phosphate fertilizers. P deficiency in soils is due to less total P contents in the soil and fixation of added P from chemical fertilizers as well as other organic sources like manures. The response of plant under P stress or even when it is present in adequate amount is very mild. The basic constraint in the availability of P is its solubilization as it gets fixed both in acidic and alkaline soil. Soil fixed P can only be solubilized by phosphate solubilizing microorganisms (PSMs).These bacteria released different types of organic acids in the soil which make P soluble and available to plants. The potential of these PSMs to solubilize P varies and mainly depends upon mechanism adopted for solubilization, their molecular genetics as well as their ability to release P in soil. The PSMs, having all the characteristics of phytohormone production, nitrogen fixation, as well as, heavy metal decontamination and creating salt stress tolerance in plants, are quite rare for sustainable agriculture. Application of this environment friendly approach for increasing crop productivity as well as its impact on soil and plant health is discussed in this review which will not only open new avenues of research but also provide fruitful information about phosphate solubilizing microbes for sustainable agriculture development.  相似文献   

8.
酸性土壤上肥田萝卜和小麦对低品位磷矿粉的吸收差异   总被引:1,自引:0,他引:1  
根据对肥田萝卜和小麦生长于不同P处理下的网膜分隔三室及二室模拟栽培系统的试验,分析了肥田萝卜和小麦对酸性土壤上低品位磷矿粉不同处理的吸收效果。结果表明,肥田萝卜对磷矿粉的吸收受到根系活动范围的限制,它可以有效利用施在根室区的低品位磷矿粉,干物重增加幅度达233%,比对照有极显着的提高;不论根室区是否施磷矿粉,肥田萝卜对于施在外室区(与根室区用网膜相隔)的低品位磷矿粉都具有微弱的利用能力,认为这是少量渗入到外室的根分泌的有机酸的活化作用。不过肥田萝卜对这一部分P的利用量不足以显着提高植株的干物重;小麦对于施在根室或外室区的低品位磷矿粉均不能有效利用.  相似文献   

9.
Summary As part of a research program to determine the fate of N fertilizers applied to dryland sorghum in the semi-arid tropics,15N balance studies were conducted with various N sources in the greenhouse. Two American soils, Houston Black clay (Udic Pellustert) and Windthorst sandy loam (Udic Paleustalf), similar in properties to the Vertisol and Alfisol in the semi-arid tropics of India, were employed. Experiments were conducted with large pots containing 20 or 60 kg of soil which was subjected to several watering regimes. The15N not accounted for in the plant and soil was presumably lost. Losses of N on calcareous Houston Black clay were greatest for broadcast urea, 16%–28%. Amendment of broadcast urea with 2% phenyl phosphorodiamidate, a urease inhibitor, reduced N losses only slightly to 15%–20%. Point placement of urea at a 6 cm soil depth reduced losses to 1%–11%. Granule size had no effect on N loss from point-placed urea. Ammonia volatilization was apparently the main N loss mechanism, since N losses from sodium nitrate were less than 7%, except when the soil surface was waterlogged. N losses on the Windthorst soil averaged 30% from urea and 11% from ammonium nitrate. Amendment of urea with urea phosphate to form a 27% N and 13% P product reduced fertilizer N losses but did not increase grain yield on Windthorst soil. N losses were also less from ammonium nitrophosphate than from urea. Band and point placement of urea 6 cm below the soil surface were equally effective in reducing N loss on Houston Black clay. The findings give credence to the recommendation of deep band placement for urea in the semi-arid tropics.  相似文献   

10.
To test the hypothesis that high levels of soluble phosphate applied in combination with VAM fungi, to citrus plants, can cause growth depression even in the absence of other limiting factors, and also to test if rock phosphate, under these conditions, may be a satisfactory P source, a greenhouse experiment was conducted using sterilized soil with four levels of phosphate (0, 50, 100 and 200 ppm P) supplied either as soluble P or as rock phosphate. Citrus seedlings were either inoculated with the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus etunicatum or left uninoculated. Six months after the start of the experiment, the plants were harvested and shoot dry weight, P and K uptake, root colonization and the number of spores in 50 cm3 of soil were determined. Significant increases were found in dry matter yields and in P and K contents, due to VAM fungus inoculation, at the zero and 50 ppm soluble P levels and at all rock phosphate levels. At 100 ppm soluble P, the development of VAM plants was equilvalent to that of non-VAM plants, and at 200 ppm, growth was significantly less than that of non-VAM plants. Root colonization and sporulation were reduced at higher P levels. The absolute growth depression of VAM plants at the higher P level was likely due to P toxicity. In addition, high leaf P and K concentrations may have interfered with carbohydrate distribution and utilization in these symbioses. Rock phosphate may be used with VAM citrus to substitute for medium amounts of soluble phosphate.  相似文献   

11.
不同碳源对三种溶磷真菌溶解磷矿粉能力的影响   总被引:18,自引:0,他引:18  
通过液体培养法 ,对 3种溶磷真菌利用葡萄糖、果糖、蔗糖、麦芽糖、淀粉和纤维素等碳源溶解宜昌产磷矿粉的试验 ,结果表明 ,菌株P2 3在供给葡萄糖时的溶磷能力最高 ,并在一定程度上能够利用长链碳源淀粉和纤维素为营养而溶磷 ;而高效溶磷菌株P6 6和P39溶磷的最佳碳源是果糖和麦芽糖 ,该两菌株利用淀粉和纤维素的溶磷效果很小 ,甚至不溶磷。 3种溶磷真菌培养滤液 pH值、可滴定酸含量与其溶磷量之间的相关性因菌株而异 ,差别很大。菌株P2 3培养滤液pH值、可滴定酸含量与其溶磷量之间相关性很低 ,但菌株P6 6和P39培养滤液pH值、可滴定酸含量与其溶磷量之间相关性却达到极显著水平 (P <0 0 1)。结果表明 ,不同碳源对溶磷菌溶解磷矿粉能力影响很大 ,分析推断 3种菌株产生的有机酸活化磷矿粉能力为P6 6>P39>P2 3。  相似文献   

12.
N. S. Bolan 《Plant and Soil》1991,134(2):189-207
The beneficial effects of mycorrhizae on plant growth have often been related to the increase in the uptake of immobile nutrients, especially phosphorus (P). In this review the mechanisms for the increase in the uptake of P by mycorrhizae and the sources of soil P for mycorrhizal and non-mycorrhizal plants are examined.Various mechanisms have been suggested for the increase in the uptake of P by mycorrhizal plants. These include: exploration of larger soil volume; faster movement of P into mycorrhizal hyphae; and solubilization of soil phosphorus. Exploration of larger soil volume by mycorrhizal plants is achieved by decreasing the distance that P ions must diffuse to plant roots and by increasing the surface area for absorption. Faster movement of P into mycorrhizal hyphae is achieved by increasing the affinity for P ions and by decreasing the threshold concentration required for absorption of P. Solubilization of soil P is achieved by the release of organic acids and phosphatase enzymes. Mycorrhizal plants have been shown to increase the uptake of poorly soluble P sources, such as iron and aluminium phosphate and rock phosphates. However, studies in which the soil P has been labelled with radioactive 32P indicated that both mycorrhizal and non-mycorrhizal plants utilized the similarly labelled P sources in soil.  相似文献   

13.
Phosphate rocks have low available P and soluble P fertilizers have been preferably used in plant crop production, although economic and effective P sources are needed. Experiments were carried out on a Brazilian Typic Fragiudult soil with low available P to evaluate the agronomic effectiveness of phosphate rock (PR) compared with soluble phosphate fertilizer. Yam bean (Pachyrhizus erosus) inoculated with rhizobia (strains NFB 747 and NFB 748) or not inoculated was the test crop. Biofertilizers were produced in field furrows by mixing phosphate rock (PR) and sulphur inoculated with Acidithiobacillus (S+Ac) in different rates (50, 100, 150 and 200 g S kg(-1) PR), with 60 days of incubation. Treatments were carried out with PR; biofertilizers B(50), B(100), B(150), B(200); triple super phosphate (TSP); B(200) without Acidithiobacillus and a control treatment without P application (P(0)). TSP and biofertilizers plus S inoculated with Acidithiobacillus increased plant growth. Soil acidity and available P increased when biofertilizers B(150) and B(200) were applied. We conclude that biofertilizers may be used as P source; however, long term use will reduce soil pH and potentially reduce crop growth.  相似文献   

14.
Gérard  B.  Hiernaux  P.  Muehlig-Versen  B.  Buerkert  A. 《Plant and Soil》2001,228(2):265-273
Little is known about the residual effects of crop residue (CR) and phosphorus (P) application on the fallow vegetation following repeated cultivation of pearl millet [Pennisetum glaucum (L.) R. Br.] in the Sahel. The objective of this study, therefore, was (i) to measure residual effects of CR, mulched at annual rates of 0, 500, 1000 and 2000 kg CR ha–1, broadcast P at 0 and 13 kg P ha–1 and P placement at 0, 1, 3, 5 and 7 kg P ha–1 on the herbaceous dry matter (HDM) 2 years after the end of the experiment and (ii) to test a remote sensing method for the quantitative estimation of HDM. Compared with unmulched plots, a doubling of HDM was measured in plots that had received at least 500 kg CR ha–1. Previous broadcast P application led to HDM increases of 14% compared with unfertilised control plots, whereas no residual effects of P placement were detected. Crop residue and P treatments caused significant shifts in flora composition. Digital analysis of colour photographs taken of the fallow vegetation and the bare soil revealed that the number of normalised green band pixels averaged per plot was highly correlated with HDM (r = 0.86) and that red band pixels were related to differences in soil surface crusting. Given the traditional use of fallow vegetation as fodder, the results strongly suggest that for the integrated farming systems of the West African Sahel, residual effects of soil amendments on the fallow vegetation should be included in any comprehensive analysis of treatment effects on the agro-pastoral system.  相似文献   

15.
Summary In a lysimetric experiment conducted in a sandy soil of Senegal, nitrogen fertilization (15N) and straw incorporation, were combined factorially, the soil being left bare or cropped with millet. On the one hand, yields were estimated, and on the other hand nitrogen absorption, immobilization, and losses were estimated in the soil-plant system. The depressive effect of straw incorporation on grain yield (32% on the average) was attributed mainly to the immobilization of fertilizer nitrogen in the rhizosphere. The depressive effect of such immobilization was alleviated by additional applications of nitrogen. Increasing the quantity of straw incorporated beyond the average amount resulted in a decrease of straw yield but had no effect on grain yield. Straw incorporation was thought to impede the plant growth during early stages but to promote it afterwards. Moreover, when the yield expressed in a fertilizer nitrogen unit basis was the highest, more than half of the plant nitrogen was nevertheless provided by the soil. The authors infer from this fact that soil organic matter was important in the efficiency of nitrogen fertilizer on pearl millet. The reduction of fertilizer nitrogen absorption following straw incorporation and not compensated by additional nitrogen fertilizer storage in the soil appeared to be related (cause or effect) to the increase of total fertilizer losses. Atmospheric losses significantly contributed to total losses (on the average 45%) of the fertilizer nitrogen applied to a planted soil. These losses can be mainly attributed to denitrification.  相似文献   

16.
A field trial was conducted at two sites in the savanna ecosystem of eastern Colombia to compare the effects of inoculation with vesicular-arbuscular mycorrhizal fungi (VAMF) ofBrachiaria dictyoneura (a tropical grass), cassava (Manihot esculenta), the tropical forage legume kudzu (Pueraria phaseoloides) andSorghum sp., and two phosphate sources. The second stage of the trial studied the effect of these pre-crop treatments on the subsequent growth, nutrition and VAM status of cowpea (Vigna unguiculata) andStylosanthes capitata in the following season, compared with both crops sown in native savanna. Inoculation significantly increased the levels of VAM and plant yields in the early growth stages of all crops during the first season, particularly with the rock phosphate (RP) source. The most significant increases were observed in the mycorrhiza-dependent cassava and kudzu crops up to 15 weeks after sowing, and were associated with increased foliar uptake of P and Mg. The effectiveness of the introduced inoculum was greater at the field site with a sandier soil. In the second season the levels of VAM in roots of cowpea andS. capitata were all increased significantly in pre-cropped plots compared with a savanna control. The increased presence of VAM was associated with significantly increased yields on plots previously sown to cassava, kudzu andSorghum sp. The data support the idea that increasing the VAMF inoculum potential of these acid-infertile soils by inoculation or pre-crops can greatly increase the rate of establishment of mycorrhiza-dependent host plants.  相似文献   

17.
Summary Inoculation of lettuce, onion and clover with VA mycorrhizal fungus (Glomus mosseae) increased plant yields and phosphate uptake in three soils that had been depleted in phosphate. From two soils in which the labile pool of phosphate had been labelled with32P, the specific activity of plant phosphate was the same whether the plants were mycorrhizal or non-mycorrhizal. In a third soil (Sonning) the specific activity was lower in lettuce and clover when the plants were mycorrhizal. When the experiment was repeated with the same soil under conditions that gave lower growth rates, the specific activity was the same in mycorrhizal and non-mycorrhizal plants. The lower specific activity in lettuce and clover in the first experiment is atributed to greater release of slowly exchanging phosphate (which is not in equilibrium with the added32P), caused by the high uptake of phosphate by the mycorrhizal plants. When they occur, lower specific activities in mycorrhizal plants may therefore not necessarily indicate a solubilizing effect of the mycorrhiza on soil phosphate.  相似文献   

18.
Zoysa  A.K.N.  Loganathan  P.  Hedley  M.J. 《Plant and Soil》1997,190(2):253-265
Rhizosphere studies on tree crops have been hampered by the lack of a satisfactory method of sampling soils at various distances in the rhizosphere. A modified root study container (RSC) technique developed for annual crops, grasses and legumes was used to study the mechanisms by which camellia plants (Camellia japonica L.) utilise soil P in the glasshouse and field. Plants belonging to the Camellia family (e.g. tea) have the ability to utilise P from relatively unavailable native P sources and for this reason camellia plants were selected for this study.In the glasshouse trial, the RSCs were filled with a Recent soil, treated with P fertilisers; North Carolina phosphate rock (NCPR), diammonium phosphate (DAP), mono calcium phosphate (MCP) and single superphosphate (SSP) at 200 g P g-1 soil. A planar mat of roots was physically separated by a 24 m polyester mesh and the soil on the other side of this mesh was cut into thin slices parallel to the rhizoplane and analysed for pH, and different forms of P (organic, Po and inorganic, Pi) to understand P depletion at different distances from camellia roots. In the field trial this technique was modified and used to study the rhizosphere processes in mature camellia trees fertilised with only SSP and NCPR.In both field and glasshouse trials, all P fertilisers increased all the bulk soil P fractions except NaOH-Po over unfertilised soil with the greatest increases being in the H2SO4-Pi fraction in the NCPR treatment and NaOH-Pi in the SSP treatment. Resin-P, NaOH-Pi and H2SO4-Pi were significantly lower in the rhizosphere soil compared to the bulk soil whereas NaOH-Po was higher in the rhizosphere soil than in the bulk soil. Plant and microbial P uptake were thought to be the major causes for the low resin-P rather than P fixation by Fe and Al because the NaOH-Pi fraction which is a measure of Fe-P and Al-P, also decreased in the rhizosphere soil. The rhizo-deposition of NaOH-Po suggests that labile inorganic P was immobilized by rhizosphere microbes which were believed to have multiplied as a result of carbon exudates from the roots. A marked reduction in pH (about 0.2–0.4 in the glasshouse and 0.2 in the field trial) was observed near the rhizoplane compared to that in the bulk soil in all treatments. The pH near the rhizoplane as well as in the bulk soil was highest for NCPR treated soil. The increase in pH in the NCPR treatment over the control was consistent with the number of protons consumed during the dissolution of NCPR. In both trials, the dissolution of NCPR in the rhizosphere was higher than in the bulk soil due to lower pH and plant uptake of solution P in the rhizosphere. The RSC technique proved to be a viable aid to study the rhizosphere processes in tree crops.  相似文献   

19.
Ruan  Jianyun  Zhang  Fusuo  Wong  Ming H. 《Plant and Soil》2000,223(1-2):65-73
The effects of nitrogen form and phosphorus source on the growth, nutrient uptake and rhizosphere soil property of tea (Camellia sinensis L.) were investigated in a pot experiment. The experiment was performed with a compartmental cropping device, which enables the collection of rhizosphere soil at defined distances from the root of tea plant. Nitrogen was supplied as nitrate or ammonium in combination with soluble phosphorus as Ca(H2PO4)2 or insoluble P as rock phosphate. The leaf dry matter production of tea was significantly greater in the treatments with NH4 + than NO3 -, whereas dry matter production of root and stem was not significantly affected. Addition of phosphorus as either source did not influence the dry matter production. The concentrations of K in root, Mg and Ca in both the shoot and root supplied with NO3 - were significantly higher than in NH4 + and influence of P sources was minor. On the contrary, Al and Mn concentrations were significantly larger in NH4 --fed plants which could be attributed to remarkably increased availability of Al and Mn caused by acidification of the rhizosphere soil (the first 1-mm soil section from the root surface) with NH4–N nutrition. The concentration of N in shoot was also significantly higher in NH4- than in NO3-fed plants, indicating higher use efficiency of NH4–N. Whatever the phosphate source, rhizosphere pH declined in ammonium compared to in nitrate treatment. The pH decrease was much larger when no P or soluble P were applied and reached 0.85–1.30 units which extended to 3–5 mm away from the root surface. Exchangeable acidity, content of exchangeable Al and Mn were also considerably higher in the rhizosphere soils of NH4 + fed tea plants. Significant amounts of P dissolved from rock phosphate accumulated in rhizosphere of NH4 +, not NO3 -, suggesting that the dissolution of rock phosphate was induced by the proton excreted by tea root fed with ammonium. With soluble P addition, shoot and root P concentrations were greater in NH4 + than in NO3 - treatment and it appeared that this difference could not be sufficiently explained by the available P content in soil which was only slightly higher in NH4 + treatment. With rock phosphate addition, the shoot and root P concentrations were hardly affected by nitrogen form, although the available P content was much higher and accumulated in the rhizosphere soil supplied with ammonium. The reason for this was discussed with regard to the inter-relationship of Al with P uptake. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Baligar  V.  He  Z.L.  Martens  D.C.  Ritchey  K.D.  Kemper  W.D. 《Plant and Soil》1997,195(1):129-136
Remediation of soil acidity is crucial for increasing crop production and improving environmental quality of acid infertile soils. Soil incubation and greenhouse pot experiments were carried out to examine the interactions between phosphate rock (PR), coal combustion by-product (BP), dolomitic lime (L), and cellulose (C) in an acidic soil and their effects on ryegrass (Lolium perenne L. cv Linn) growth. BP and PR application increased plant P content and dry matter yield (DMY) of shoots and roots by improving soil Ca availability and reducing Al toxicity. Application of BP at low rates (5 to 10 g BP kg-1) with PR appeared to decrease both plant P content and DMY compared to PR application alone. The reduced DMY is due to an increased Al concentration in soil solution as a result of displacement of sorbed Al by Ca of BP. Increases in DMY were obtained by addition of lime along with PR and BP at low rates or by increasing BP application rates above 15 g kg-1. This improved plant response was likely related to alleviation of Al toxicity by CaCO3 contained in the BP. In addition to raising the pH to an acceptable level for plant growth, the dolomitic lime supplied needed Mg for plants, thereby maintaining a good balance between available Ca and Mg for plants in the BP- and PR-amended soils. The addition of cellulose to the BP- and PR-amended soils reduced water-soluble Al and increased DMY. Plant growth increased PR dissolution by 2.4 to 243% in a soil with low available P. Use of BP at moderate rates with PR and dolomitic lime appears to be the best combination in increasing crop yields on infertile acidic soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号