首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interleukin-6 cytokine family plays roles in a wide variety of tissues and organs, including the immune hematopoietic and nervous systems. Gp130 is a signal-transducing subunit shared by the receptors for the IL-6 family of cytokines. The binding of a ligand to its receptor induces the dimerization of gp 130, leading to the activation of JAK tyrosine kinase and tyrosine phosphorylation of gpl30. These events lead to the activation of multiple signal-transduction pathways, such as the STAT, Ras-MAPK and PI-3 kinase pathways whose activation is controlled by distinct regions of gp130. We propose a model showing that the outcome of the signal transduction depends on the balance or interplay among the contradictory signal transduction pathways that are simultaneously generated through a cytokine receptor in a given target cell.  相似文献   

2.
3.
4.
5.
Cross-talk among gp130 cytokines in adipocytes   总被引:3,自引:0,他引:3  
  相似文献   

6.
The related cytokines, interleukin-6 (IL-6), oncostatin M (OSM), and leukemia inhibitory factor (LIF) direct the formation of specific heteromeric receptor complexes to achieve signaling. Each complex includes the common signal-transducing subunit gp130. OSM and LIF also recruit the signaling competent, but structurally distinct OSMRbeta and LIFRalpha subunits, respectively. To test the hypothesis that the particularly prominent cell regulation by OSM is due to signals contributed by OSMRbeta, we introduced stable expression of human or mouse OSMRbeta in rat hepatoma cells which have endogenous receptors for IL-6 and LIF, but not OSM. Both mouse and human OSM engaged gp130 with their respective OSMRbeta subunits, but only human OSM also acted through LIFR. Signaling by OSMRbeta-containing receptors was characterized by highest activation of STAT5 and ERK, recruitment of the insulin receptor substrate and Jun-N-terminal kinase pathways, and induction of a characteristic pattern of acute phase proteins. Since LIF together with LIFRalpha appear to form a more stable complex with gp130 than OSM with gp130 and OSMRbeta, co-activation of LIFR and OSMR resulted in a predominant LIF-like response. These results suggest that signaling by IL-6 cytokines is not identical, and that a hierarchical order of cytokine receptor action exists in which LIFR ranks as dominant member.  相似文献   

7.
Oncostatin M (OSM) is a member of a family of cytokines that includes ciliary neurotrophic factor, interleukin-6, interleukin-11, cardiotrophin-1, and leukemia inhibitory factor (LIF). The receptors for these cytokines consist of a common signaling subunit, gp130, to which other subunits are added to modify ligand specificity. We report here the isolation and characterization of a cDNA encoding a subunit of the mouse OSM receptor. In NIH 3T3 cells (which endogenously express gp130, LIF receptor β [LIFRβ], and the protein product, c12, of the cDNA described here), mouse LIF, human LIF, and human OSM signaled through receptors containing the LIFRβ and gp130 but not through the mouse OSM receptor. Mouse OSM, however, signaled only through a c12-gp130 complex; it did not use the LIF receptor. Binding studies demonstrated that mouse OSM associated directly with either the c12 protein or gp130. These data highlight the species-specific differences in receptor utilization and signal transduction between mouse and human OSM. In mouse cells, only mouse OSM is capable of activating the mouse OSM receptor; human OSM instead activates the LIF receptor. Therefore, these data suggest that all previous studies with human OSM in mouse systems did not elucidate the biology of OSM but, rather, reflected the biological actions of LIF.  相似文献   

8.
The common use of the cytokine receptor gp130 has served as an explanation for the extremely redundant biological activities exerted by interleukin (IL)-6-type cytokines. Indeed, hardly any differences in signal transduction initiated by these cytokines are known. In the present study, we demonstrate that oncostatin M (OSM), but not IL-6 or leukemia inhibitory factor, induces tyrosine phosphorylation of the Shc isoforms p52 and p66 and their association with Grb2. Concomitantly, OSM turns out to be a stronger activator of ERK1/2 MAPKs. Shc is recruited to the OSM receptor (OSMR), but not to gp130. Binding involves Tyr(861) of the OSMR, located within a consensus binding sequence for the Shc PTB domain. Moreover, Tyr(861) is essential for activation of ERK1/2 and for full activation of the alpha(2)-macroglobulin promoter, but not for an exclusively STAT-responsive promoter. This study therefore provides evidence for qualitative differential signaling mechanisms exerted by IL-6-type cytokines.  相似文献   

9.
Gp130 cytokine receptor is involved in the formation of multimeric functional receptors for interleukin-6 (IL-6), IL-11, leukemia inhibitory factor (LIF), oncostatin M (OSM), ciliary neurotrophic factor, and cardiotrophin-1. Cloning of the epitope recognized by an OSM-neutralizing anti-gp130 monoclonal antibody identified a portion of gp130 receptor localized in the EF loop of the cytokine binding domain. Site-directed mutagenesis of the corresponding region was carried out by alanine substitution of residues 186-198. To generate type 1 or type 2 OSM receptors, gp130 mutants were expressed together with either LIF receptor beta or OSM receptor beta. When positions Val-189/Tyr-190 and Phe-191/Val-192 were alanine-substituted, Scatchard analyses indicated a complete abrogation of OSM binding to both type receptors. Interestingly, binding of LIF to type 1 receptor was not affected, corroborating the notion that in this case gp130 mostly behaves as a converter protein rather than a binding receptor. The present study demonstrates that positions 189-192 of gp130 cytokine binding domain are essential for OSM binding to both gp130/LIF receptor beta and gp130/OSM receptor beta heterocomplexes.  相似文献   

10.
Down-regulation of interleukin (IL)-6-type cytokine signaling has been shown to occur, among other mechanisms, via induction of the feedback inhibitor SOCS3 (suppressor of cytokine signaling 3). Binding of SOCS3 to the phosphorylated Tyr(759) in the cytoplasmic region of gp130, the common signal transducing receptor chain of all IL-6-type cytokines, is necessary for inhibition of Janus kinase-mediated signaling. In the present study, we analyzed the effect of SOCS3 on signal transduction by the proinflammatory cytokine oncostatin M (OSM), which signals through a receptor complex of gp130 and the OSM receptor (OSMR). OSM leads to a much stronger and prolonged induction of SOCS3 in HepG2 hepatoma cells and murine embryonal fibroblasts (MEF) compared with IL-6. A negative effect of SOCS3 on OSM signaling was confirmed using MEF cells lacking SOCS3. We can show that the OSMR-mediated signaling is inhibited by SOCS3 to a similar extent as previously described for gp130. However, the inhibition occurs independent of tyrosine motifs within the OSMR. Instead, SOCS3 interacts directly with JAK1 in a stimulation-dependent manner, a mechanism so far only known for SOCS1.  相似文献   

11.
Oncostatin M (OSM) and leukemia inhibitory factor are pleiotropic cytokines that belong to the interleukin-6 (IL-6) family. These cytokines play a crucial role in diverse biological events like inflammation, neuroprotection, hematopoiesis, metabolism, and development. The family is grouped together based on structural similarities and their ability to activate the transmembrane receptor glycoprotein 130 (gp130). The common structure among these cytokines defines the spacing and the orientation of binding sites for cell surface receptors. OSM is unique in this family as it can signal using heterodimers of gp130 with either leukemia inhibitory factor receptor (LIFR) (type I) or oncostatin M receptor (OSMR) (type II). We have identified a unique helical loop on OSM between its B and C helices that is not found on other IL-6 family cytokines. This loop is located near the "FXXK" motif in active site III, which is essential for OSM's binding to both LIFR and OSMR. In this study, we show that the BC loop does not play a role in OSM's unique ability to bind OSMR. Shortening of the loop enhanced OSM's interaction with OSMR and LIFR as shown by kinetic and equilibrium binding analysis, suggesting the loop may hinder receptor interactions. As a consequence of improved binding, these structurally modified OSMs exhibited enhanced biological activity, including suppressed proliferation of A375 melanoma cells.  相似文献   

12.
The gp130-like receptor (GPL) is a recently cloned member of the family of type I cytokine receptors. The name reflects its close relationship to gp130, the common receptor subunit of the interleukin (IL)-6-type cytokines. Indeed, the recently proposed ligand for GPL, IL-31, is closely related to the IL-6-type cytokines oncostatin M, leukemia inhibitory factor, and cardiotrophin-1. The second signal transducing receptor for IL-31 seems to be the oncostatin M receptor beta (OSMRbeta). The present study characterizes in depth the molecular mechanisms underlying GPL-mediated signal transduction. GPL is a strong activator of STAT3 and STAT5, whereas STAT1 is only marginally tyrosine-phosphorylated. We identify tyrosine residues 652 and 721 in the cytoplasmic region of the longest isoform of GPL (GPL(745)) as the major STAT5- and STAT3-activating sites, respectively. Additionally, we demonstrate Jak1 binding to GPL and its activation in heteromeric complexes with the OSMRbeta but also in a homomeric receptor complex. Most interesting, unlike OSMRbeta and gp130, GPL is insufficient to mediate ERK1/2 phosphorylation. We propose that this is due to a lack of recruitment of the tyrosine phosphatase SHP-2 or the adaptor protein Shc to the cytoplasmic domain of GPL.  相似文献   

13.
Leukemia inhibitory factor (LIF) signals via the heterodimeric receptor complex comprising the LIF receptor alpha subunit (LIFRalpha) and the common signal transducing subunit for interleukin-6 cytokine receptors, gp130. This study demonstrates that in different cell types, the level of LIFRalpha decreases during treatment with LIF or the closely related cytokine oncostatin M (OSM). Moreover, insulin and epidermal growth factor induce a similar LIFRalpha down-regulation. The regulated loss of LIFRalpha is specific since neither gp130 nor OSM receptor beta shows a comparable change in turnover. LIFRalpha down-regulation correlates with reduced cell responsiveness to LIF. Using protein kinase inhibitors and point mutations in LIFRalpha, we demonstrate that LIFRalpha down-regulation depends on activation of extracellular signal-regulated kinase 1/2 and phosphorylation of the cytoplasmic domain of LIFRalpha at serine 185. This modification appears to promote the endosomal/lysosomal pathway of the LIFRalpha. These results suggest that extracellular signal-regulated kinase-activating factors like OSM and growth factors have the potential to lower specifically LIF responsiveness in vivo by regulating LIFRalpha half-life.  相似文献   

14.
Oncostatin M binds the high-affinity leukemia inhibitory factor receptor.   总被引:12,自引:0,他引:12  
Oncostatin M (OSM) is a glycoprotein cytokine that was recently demonstrated to be structurally and functionally related to the leukemia inhibitory factor (LIF). We have investigated the binding of each cytokine to a variety of cellular receptors including those on solid tumor lines, leukemic cells, endothelial cells, macrophages, and cells transfected with the recently cloned low-affinity LIF receptor, and to a soluble form of the LIF receptor. LIF is incapable of binding either high- or low-affinity OSM receptors, yet OSM is capable of binding the high-affinity but not the low-affinity LIF receptor. Since the presence of high-affinity LIF receptors correlates with the biological activity of LIF on a wide range of target cells, we predict that OSM should have similar effects on LIF-responsive cells.  相似文献   

15.
16.
17.
The cytokines IL-6, LIF, CNTF, OSM, IL-11, and CT-1 have been grouped into the family of IL-6-type cytokines, since they all require gp130 for signal transduction. Interestingly, gp130 binds directly to OSM, whereas complex formation with the other cytokines depends on additional receptor subunits. Only limited structural information on these cytokines and their receptors is available. X-ray structures have been solved for the cytokines LIF and CNTF, whose up-up-down-down four-helix bundle is common to all of these cytokines, and for the receptors of hGH and prolactin, which contain two domains with a fibronectin III-like fold. Since cocrystallization and x-ray analysis of the up to four different proteins forming the receptor complexes of the IL-6-type cytokines is unlikely to be achieved in the near future, model building based on the existing structural information is the only approach for the time being. Here we present model structures of the complexes of human and murine IL-6 with their receptors. Their validity can be deduced from the fact that published mutagenesis data and the different receptor specificity of human and murine IL-6 can be understood. It is now possible to predict the relative positions and contacts for all molecules in their respective complexes. Such information can be used for the rational design of cytokine and receptor antagonists, which may have a valuable therapeutic perspective. Proteins 27:96–109 © 1997 Wiley-Liss, Inc.  相似文献   

18.
High levels of circulating interleukin-6 (IL6), and possibly neuroendocrine (NE) differentiation, correlate with advanced prostate cancer (PCa). IL6 has many overlapping biological effects with the related gp130 cytokines LIF and OSM that can be explained by the shared usage of the signalling receptor, gp130. We set out to determine whether LIF and OSM can substitute for IL6 in PCa, particularly in relation to neuroendocrine differentiation. Expression analysis of the gp130 cytokines and receptors by RT-PCR, Southern blotting and immunohistochemistry showed that they are widely expressed in LNCaP, DU145 and PC3 cells, but not in normal prostate epithelial PZ-HPV-7 cells. IL6, but not LIF or OSM inhibited proliferation, induced NE differentiation and tyrosine phosphorylation of STAT3 in LNCaP cells. The data suggests that IL6 has a unique role in the progression of PCa.  相似文献   

19.
Janus kinase 1 (Jak1) is a cytoplasmic tyrosine kinase that noncovalently associates with a variety of cytokine receptors. Here we show that the in vitro translated N-terminal domains of Jak1 are sufficient for binding to a biotinylated peptide comprising the membrane-proximal 73 amino acids of gp130, the signal-transducing receptor chain of interleukin-6-type cytokines. By the fold recognition approach amino acid residues 36-112 of Jak1 were predicted to adopt a beta-grasp fold, and a structural model was built using ubiquitin as a template. Substitution of Tyr(107) to alanine, a residue conserved among Jaks and involved in hydrophobic core interactions of the proposed beta-grasp domain, abrogated binding of full-length Jak1 to gp130 in COS-7 transfectants. By further mutagenesis we identified the loop 4 region of the Jak1 beta-grasp domain as essential for gp130 association and gp130-mediated signal transduction. In Jak1-deficient U4C cells reconstituted with the loop 4 Jak1 mutants L80A/Y81A and Delta(Tyr(81)-Ser(84)), the interferon-gamma, interferon-alpha, and interleukin-6 responses were similarly impaired. Thus, loop 4 of the beta-grasp domain plays a role in the association of Jak1 with both class I and II cytokine receptors. Taken together the structural model and the mutagenesis data provide further insight into the interaction of Janus kinases with cytokine receptors.  相似文献   

20.
Hui W  Bell M  Carroll G 《Cytokine》2000,12(2):151-155
Oncostatin M (OSM) and leukaemia inhibitory factor (LIF) exhibit pleiotropic biological activities and share many structural and genetic features. The two cytokines bind with high affinity to the same receptor (LIF/OSM receptor), which consists of the LIF receptor alpha chain (LIFRalpha) and the signal transduction unit gp130. A soluble form of the beta chain of the receptor complex called soluble gp130 (sgp130) has been cloned. In this study, we sought to determine whether recombinant sgp130 or anti-gp130 Ab could attenuate the resorption of proteoglycans induced by OSM and LIF in articular cartilage explants. The results show that at high concentrations sgp130 is capable of attenuating both LIF and OSM mediated resorption. In contrast, anti-gp130 Ab selectively inhibited the stimulation of proteoglycan (PG) release by OSM, albeit minimally. The failure of anti-gp130 to attenuate LIF stimulated PG resorption may be due to the normal interaction of LIF with LIFRalpha and unfettered heterodimerization of LIFRalpha with gp130 in the presence of the antibody. The results indicate that sgp130 and anti-gp130 can modulate cartilage PG metabolism in vitro. Whether sgp130 may have therapeutic activity in models of arthritis or indeed in arthritic diseases remains to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号