共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
高盐和渗透等非生物胁迫是影响农作物产量和品质的重要因素,非生物胁迫发生时,植物通过体内各类转录因子启动胁迫应答反应,进而降低非生物胁迫对植物的损伤。本研究筛选出植物特异性转录因子ANAC055编码基因的纯合T-DNA插入突变体SALK_152738,测序分析发现T-DNA插在ANAC055基因的3'UTR区域。实时荧光定量PCR结果表明叶中ANAC055基因表达量最高;与野生型相比,突变体叶、茎和花中ANAC055基因表达量分别下降了40%、50%和70%。高盐胁迫后,野生型和突变体叶中ANAC055基因表达量分别比对照上升了320%和55.4%;而渗透胁迫时,该基因叶中的表达量分别比对照下降了47.7%和56.3%;电子表达谱分析发现该基因根中的表达可受高盐和渗透等多种非生物胁迫的诱导表达。高盐和渗透胁迫时野生型和突变体幼根的生长均受到明显抑制,但高盐胁迫对突变体根生长的抑制作用比对野生型根生长的抑制作用更大。上述分析表明拟南芥ANAC055基因可受高盐和渗透等非生物胁迫的诱导表达,并且其在拟南芥幼根的生长发育过程中具有一定的作用,本研究有助于进一步明确其在非生物胁迫过程中的作用。 相似文献
4.
The role of salicylic acid (SA) in plant responses to pathogens has been well documented, but its direct and indirect effects on plant responses to insects are not so well understood. We examined the effects of SA, alone and in combination with jasmonic acid (JA), on the performance of the generalist herbivore, Spodoptera exigua, in wild-type and mutant Arabidopsis thaliana genotypes that varied genetically in their ability to mount SA- and JA-mediated defence responses. In one experiment, growth of S. exigua larvae was highest on the Wassilewskija wild-type, intermediate on the Columbia wild-type and the JA-deficient fad mutant, and lowest on the nim1-1 and jar1-mutants, which are defective in the SA and JA pathways, respectively. Activity of guaiacol peroxidase, polyphenoloxidase, n-acetylglucosaminidase, and trypsin inhibitor varied by genotype but did not correlate with insect performance. SA treatment increased growth of S. exigua larvae by approximately 35% over all genotypes, but had no discernable effect on activities of the four defence proteins. In a second experiment, growth of S. exigua was highest across treatments on the cep1 mutant, a constitutive expressor of high SA levels and systemic acquired resistance, and lowest on the fad mutant, which is JA-deficient. JA treatment generally increased activity of all four defence proteins, increased total glucosinolate levels and reduced insect growth by approximately 25% over all genotypes. SA generally inhibited expression of JA-induced resistance to S. exigua when both hormones were applied simultaneously. Across genotypes and treatments, larval mass was negatively correlated with the activity of trypsin inhibitor and polyphenoloxidase and with total glucosinolate levels, and insect damage was negatively correlated with the activity of polyphenoloxidase. SA had little effect on the induction of defence protein activity by JA. However, SA attenuated the induction of glucosinolates by JA and therefore may explain better the interactive effects of SA and JA on insect performance. This study illustrates that direct and indirect cross-effects of SA on resistance to S. exigua can occur in A. thaliana. Effects of SA may be mediated through effects on plant defence chemistry or other aspects of the suitability of foliage for insect feeding and growth. 相似文献
5.
6.
7.
8.
9.
10.
Chaturvedi R Krothapalli K Makandar R Nandi A Sparks AA Roth MR Welti R Shah J 《The Plant journal : for cell and molecular biology》2008,54(1):106-117
Systemic acquired resistance (SAR) is an inducible defense mechanism that is activated throughout the plant, subsequent to localized inoculation with a pathogen. The establishment of SAR requires translocation of an unknown signal from the pathogen-inoculated leaf to the distal organs, where salicylic acid-dependent defenses are activated. We demonstrate here that petiole exudates (PeXs) collected from Arabidopsis leaves inoculated with an avirulent (Avr) Pseudomonas syringae strain promote resistance when applied to Arabidopsis, tomato ( Lycopersicum esculentum ) and wheat ( Triticum aestivum ). Arabidopsis FATTY ACID DESATURASE7 ( FAD7 ), SUPPRESSOR OF FATTY ACID DESATURASE DEFICIENCY1 ( SFD1 ) and SFD2 genes are required for accumulation of the SAR-inducing activity. In contrast to Avr PeX from wild-type plants, Avr PeXs from fad7 , sfd1 and sfd2 mutants were unable to activate SAR when applied to wild-type plants. However, the SAR-inducing activity was reconstituted by mixing Avr PeXs collected from fad7 and sfd1 with Avr PeX from the SAR-deficient dir1 mutant. Since FAD7 , SFD1 and SFD2 are involved in plastid glycerolipid biosynthesis and SAR is also compromised in the Arabidopsis monogalactosyldiacylglycerol synthase1 mutant we suggest that a plastid glycerolipid-dependent factor is required in Avr PeX along with the DIR1- encoded lipid transfer protein for long-distance signaling in SAR. FAD7 -synthesized lipids provide fatty acids for synthesis of jasmonic acid (JA). However, co-infiltration of JA and methylJA with Avr PeX from fad7 and sfd1 did not reconstitute the SAR-inducing activity. In addition, JA did not co-purify with the SAR-inducing activity confirming that JA is not the mobile signal in SAR. 相似文献
11.
拟南芥中CBF(C-repeat binding factor)转录因子在抗寒性方面起重要作用,低温可诱导CBF转录因子的表达。CBF转录因子能够特异结合启动子中含有CRT/DRE(C-repeat/dehydration responsive element)的顺式元件,激活COR等基因的表达,从而增强植株抗寒能力,对调控逆境诱导基因的表达具有非常重要的作用。对CBF转录因子的结构特点、功能、表达调控以及与CBF相关的其它低温调节途径进行了综述,为提高植物综合抗逆性的研究提供参考。 相似文献
12.
13.
Tsai CH Singh P Chen CW Thomas J Weber J Mauch-Mani B Zimmerli L 《The Plant journal : for cell and molecular biology》2011,65(3):469-479
The priming agent β-aminobutyric acid (BABA) is known to enhance Arabidopsis resistance to the bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000 by potentiating salicylic acid (SA) defence signalling, notably PR1 expression. The molecular mechanisms underlying this phenomenon remain unknown. A genome-wide microarray analysis of BABA priming during Pst DC3000 infection revealed direct and primed up-regulation of genes that are responsive to SA, the SA analogue benzothiadiazole and pathogens. In addition, BABA was found to inhibit the Arabidopsis response to the bacterial effector coronatine (COR). COR is known to promote bacterial virulence by inducing the jasmonic acid (JA) response to antagonize SA signalling activation. BABA specifically repressed the JA response induced by COR without affecting other plant JA responses. This repression was largely SA-independent, suggesting that it is not caused by negative cross-talk between SA and JA signalling cascades. Treatment with relatively high concentrations of purified COR counteracted BABA inhibition. Under these conditions, BABA failed to protect Arabidopsis against Pst DC3000. BABA did not induce priming and resistance in plants inoculated with a COR-deficient strain of Pst DC3000 or in the COR-insensitive mutant coi1-16. In addition, BABA blocked the COR-dependent re-opening of stomata during Pst DC3000 infection. Our data suggest that BABA primes for enhanced resistance to Pst DC3000 by interfering with the bacterial suppression of Arabidopsis SA-dependent defences. This study also suggests the existence of a signalling node that distinguishes COR from other JA responses. 相似文献
14.
A homozygous, dominant, C2 H4 -resistant line of Arabidopsis thaliana (L.) Heynh (cv. Columbia; er ) was selected from ethylmethylsulfonate-mutagenized seed, and used to test the role of C2 H4 and other growth regulators in senescence of mature leaves. Chlorophyll (Chl) loss from disks excised from leaves of er was much slower than that from wild-type (WT) disks, whether they were held in the light or in the dark. C2 H4 accelerated Che loss from WT disks but had no effect on the yellowing of mutant disks. C2 H4 biosynthesis was higher in disks from the mutant plants, particularly in the light. In the dark, treatment with the cytokinin, 6-benzyladenine (BA), reduced Chl loss from wild-type disks, but had no effect on mutant disks. In the light, BA treatment stimulated chlorophyll breakdown in both wild type and mutant disks. Treatment with abscisic acid (ABA) stimulated chlorophyll loss in wild-type and mutant disks, whether they were held in the light or the dark. C2 H4 production was stimulated in ABA-treated disks, but they still yellowed even when C2 H4 production was inhibited by application of aminooxyacetic acid (AOA). These data indicate that C2 H4 is only one of the factors involved in leaf senescence, and that the promotion of senescence by ABA is not mediated through its stimulation of C2 H4 production. 相似文献
15.
16.
The role of jasmonic acid (JA) in plant photomorhogenesis under green light (GL) was studied. The effect of GL of different intensity (8.1 and 18.1 W/m2) with or without 1 μM JA treatment on growth of plants and photosynthetic pigment level was compared for two types of Arabidopsis thaliana (L.) Heynh. Landsberg erecta ecotype plants: Ler, the wild type, and hy4, a mutant. A much more pronounced growth of hypocotyls and cotyledons of Ler plants in GL was observed compared to that of hy4 with suppressed cryptochrome 1 (cry1), a GL photoreceptor. Treatment with JA in GL caused retardation of hypocotyl and cotyledon growth of Ler plants; however, it stimulated their growth in hy4 plants. JA reduced the chlorophyll a and total carotenoids levels in cotyledons of Arabidopsis plants in GL. Blocked GL signal transduction due to the absence of cry1 in hy4, as well as the higher intensity of GL reduced the negative effect of exogenous JA on growth of cotyledons and photosynthetic pigments. The data obtained provide a basis for discussion of interaction between the JA and GL signals in the growth regulation controlled by cry1. Original Russian Text ? I.F. Golovatskaya, R.A. Karnachuk, 2008, published in Fiziologiya Rastenii, 2008, Vol. 55, No. 2, pp. 240–244. 相似文献
17.
报告了钙流通抑制剂钌红对缺氧条件下拟南芥中ADH基因表达的诱导和植株存活的影响。结果表明 ,缺氧早期ADH基因的激活和表达需要钙离子 ,钌红处理可以延长缺氧条件下拟南芥植株的存活期。据此推测 :拟南芥中缺氧诱导的细胞死亡是一个钙离子介导的主动过程 ,钌红通过阻止细胞内钙离子浓度的增加而抑制这一过程。延长缺氧处理的时间会导致拟南芥叶片细胞内发生核凝聚和染色体断裂的现象 ,也进一步验证了这种构想。表明缺氧处理引起的叶片细胞损伤直至植株死亡是一个程序化的过程 相似文献
18.
19.
20.
TCP transcription factors are critical for the coordinated regulation of ISOCHORISMATE SYNTHASE 1 expression in Arabidopsis thaliana 下载免费PDF全文
Xiaoyan Wang Jiong Gao Zheng Zhu Xianxin Dong Xiaolei Wang Guodong Ren Xin Zhou Benke Kuai 《The Plant journal : for cell and molecular biology》2015,82(1):151-162