首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Molecular imprinting is a technique for creating artificial receptor sites in a polymer. Molecularly imprinted polymers (MIPs) are produced by forming a polymer around a molecule that is used as the template. Upon removal of the template, molecular holes remain which are specific in shape and size to the target molecule. In this research, a MIP was formed for theophylline using a copolymer of methacrylic acid and ethylene glycol dimethacrylate. The theophylline MIP was formed on two platforms: indium tin oxide (ITO) and silicon, which were used as the working electrode for cyclic voltammetry measurements. The presence of theophylline was measured using cyclic voltammetry and corresponded to the peak current on the cyclic voltammograms. The results of this research agreed with previous results of MIPs immobilized on an ITO platform. The peak currents of the MIP in the presence and absence of theophylline were compared to the blank polymer for each platform. The ratio of peak currents on ITO increased by a factor of 9.5 for the MIP compared to the non-imprinted polymer. Similarly, the ratio of peak currents on silicon increased by a factor of 6 compared to the non-imprinted polymer. This research demonstrated a procedure for evaluating a MIP layer on two different platforms.  相似文献   

2.
Molecularly imprinted polymers (MIPs) were grafted on iniferter-modified carbon nanotube (CNT). Tween 20 was first immobilized on CNT by hydrophobic interactions. The hydroxyl-functionalized CNT was modified by silanisation with 3-chloropropyl trimethoxysilane. The iniferter groups were then introduced by reacting the CNT-bound chloropropyl groups with sodium N,N-diethyldithiocarbamate. UV light-initiated copolymerization of ethylene glycol dimethacrylate (crosslinking agent) and methacrylic acid (functional monomer) resulted in grafting of MIP on CNT for theophylline as a model template. MIPs grafted on CNT were characterized with elemental analysis, scanning electron microscopy, and thermogravimetric analysis. The theophylline-imprinted polymer on CNT showed higher binding capacity for theophylline than non-imprinted polymer on CNT and selectivity for theophylline over caffeine and theobromine (similar structure molecules). The data of theophylline and caffeine binding into the theophylline-imprinted polymer correlated well with the Scatchard plot. These MIPs on CNT can potentially be applied to probe materials in biosensor system based on CNT field effect transistor.  相似文献   

3.
Anionic polymer sodium carboxymethylcellulose (CELLOGEN® HP-HS and/or HP-12HS) was investigated for its ability to influence the release of three model drugs propranolol hydrochloride, theophylline and ibuprofen from polyethylene oxide (POLYOX™ WSR 1105 and/or Coagulant) hydrophilic matrices. For anionic ibuprofen and non-ionic theophylline, no unusual/unexpected release profiles were obtained from tablets containing a mixture of two polymers. However, for cationic propranolol HCl, a combination of polyethylene oxide (PEO) with sodium carboxymethylcellulose (NaCMC) produced a significantly slower drug release compared to the matrices with single polymers. The potential use of this synergistic interaction can be a design of new extended release pharmaceutical dosage forms with a more prolonged release (beyond 12 h) using lower polymer amount, which could be particularly beneficial for freely water-soluble drugs, preferably for once daily oral administration. In order to explain changes in the obtained drug release profiles, Fourier transform infrared absorption spectroscopy was performed. A possible explanation for the more prolonged propranolol HCl release from matrices based on both PEO and NaCMC may be due to a chemical bond (i.e. ionic/electrostatic intermolecular interaction) between amine group of the cationic drug and carboxyl group of the anionic polymer, leading to a formation of a new type/form of the active (i.e. salt) with sustained release pattern.Key words: extended release, FT-IR, ibuprofen, matrix tablet, polyethylene oxide, polymer combination, propranolol hydrochloride, sodium carboxymethylcellulose, theophylline  相似文献   

4.
The purpose of this study was to investigate the physical stability of a coating system consisting of a blend of two sustained release acrylic polymers and its influence on the drug release rate of theophylline from coated pellets. The properties of both free films and theophylline pellets coated with the polymer blend were investigated, and the miscibility was determined via differential scanning calorimetry. Eudragit® RS 30 D was plasticized by the addition of Eudragit® NE 30 D, and the predicted glass transition temperature (T g) of the blend was similar to the experimental values. Sprayed films composed of a blend of Eudragit® NE 30 D/Eudragit® RS 30 D (1:1) showed a water vapor permeability six times greater than films containing only Eudragit® NE 30 D. The presence of quaternary ammonium functional groups from the RS 30 D polymer increased the swellability of the films. The films prepared from the blend exhibited stable permeability values when stored for 1 month at both 25°C and 40°C, while the films which were composed of only Eudragit® NE 30 D showed a statistically significant decrease in this parameter when stored under the same conditions. Eudragit® NE 30 D/Eudragit® RS 30 D (1:1)-sprayed films decreased in elongation from 180% to 40% after storage at 40°C for 1 month, while those stored at 25°C showed no change in elongation. In coated pellets, the addition of Eudragit® RS 30 D to the Eudragit® NE 30 D increased the theophylline release rate, and the pellets were stable when stored at 25°C for a period of up to 3 months due to maintenance of the physico-mechanical properties of the film. Pellets stored at 40°C exhibited a decrease in drug release rate over time as a result of changes in film physico-mechanical properties which were attributed to further coalescence and densification of the polymer. When the storage temperature was above the T g of the composite, instabilities in both drug release rate and physical properties were evident. Stabilization in drug release rate from coated pellets could be correlated with the physico-mechanical stability of the film formulation when stored at temperatures below the T g of the polymer.  相似文献   

5.
A simple, sensitive and selective high performance liquid chromatography (HPLC) method with ultraviolet detection (272 nm) was developed and validated for the simultaneous quantification of theophylline and etofylline in human plasma. Following rapid sample preparation, the analytes and internal standard (hydrochlorothiazide) were separated using an isocratic mobile phase on a reverse phase C18 column. The lower limit of quantification was 100 ng/mL for both theophylline and etofylline with a relative standard deviation of less than 6%. A linear dynamic range of 100-10,000 ng/mL for both theophylline and etofylline was established. This HPLC method was validated with between-batch precision of 2.2-6.0 and 1.4-3.7% for theophylline and etofylline, respectively. The between-batch accuracy was 94.3-98.0 and 95.4-98.2%, respectively. Stability of theophylline and etofylline in plasma was excellent, with no evidence of degradation during sample processing (autosampler) and 30 days storage in a freezer. This validated method is simple and rugged enough to be used in pharmacokinetic studies.  相似文献   

6.
Biodegradable molecularly imprinted polymers based on poly(ε-caprolactone)   总被引:1,自引:0,他引:1  
Novel biodegradable molecularly imprinted polymers (MIPs) based on poly(ε-caprolactone) (PCL) were prepared by combining two important properties required of ideal biomaterials, biodegradability (with biocompatibility) and molecular recognition properties. Acrylate or methacrylate end-capped PCL macromers were synthesized through the reaction of PCL diol or triol with acryloyl or methacryloyl chloride. The synthesis of acrylate or methacrylate end-capped macromers was confirmed using FT-IR and H NMR spectroscopic techniques. These macromers were used to prepare biodegradable crosslinked networks by photopolymerization with functional monomer (acrylic acid) and a model template (theophylline). The theophylline-imprinted polymer showed higher binding capacity for theophylline compared with non-imprinted polymer (NIP), and also showed selectivity for theophylline over caffeine (similar structure molecules). PCL-based MIP degraded 8% of the initial weight in 30 days in phosphate-buffered saline (PBS) solution (pH 7.4) and over 90% of the initial weight within 24 h in 1 N NaOH at 37°C.  相似文献   

7.
A new molecularly imprinted polymer was synthesized using ofloxacin and theophylline as template and methacryclic acid as function monomer and it was employed as a special dispersant of matrix solid-phase dispersion for selective extraction of fluoroquinolones (ofloxacin, ciprofloxacin and enrofloxacin) and xanthine (caffeine and theophylline) from human serum samples. To eliminate the influences of template leaking on quantitative analysis, acetonitrile-trifluoracetic acid (99:1, v/v) was used as the template removing solution. By using water and acetonitrile-trifluoracetic acid (99.5:0.5, v/v) as the washing and elution solvent, respectively, satisfactory recoveries and clean enough chromatogram could obtained. Good linearity of all the analytes was observed in a range of 0.35-150 μg g(-1) with the correlation coefficient (r(2))≥0.9991. The recoveries of spiked human serum samples were in a range of 89.5-104.0% for fluoroquinolones and xanthine derivatives with RSD less than of 5.0%.  相似文献   

8.
α-Amylase from Bacillus amyloliquefaciens was purified by the immobilized metal ion affinity adsorbent, β-CDcl-IDA-Cu2+. The adsorbent was prepared by reacting the cross-linked β-cyclodextrin (β-CD) with the ligand, iminodiacetic acid (IDA). The copper ion was further linked to the adsorbent. Poly(ethylene glycol) (PEG) was added to the fermentation broth to improve the adsorption efficiency of the adsorbent toward α-amylase. The effort was to provide hydrophobic interactions with the impurities which might interfere with the adsorption of α-amylase. It also provided a polymer shielding effect to prevent non-specific interactions. With the addition of PEG, the adsorption efficiency could be increased to 98%. Imidazole containing a phosphate buffer and NaCl was used to elute the bound α-amylase. By consecutive adsorption/desorption steps, up to 81% of the α-amylase activity could be recovered. Regarding the reutilization of the affinity adsorbents, α-amylase could be adsorbed and desorbed six times consecutively without a significant loss of α-amylase activity.  相似文献   

9.
Cross-linked poly(methylmethacrylate-co-methacrylic acid) nanospheres were imprinted with theophylline through template radical polymerisation in diluted acetonitrile solution. This study will focus on the effect of functional monomer nature used (methylmethacrylate and/or methacrylic acid) in the recognition and in the release of template in order to develop a material with combined properties of drug delivery and rebinding for clinical applications. After template extraction the nanospheres showed satisfactory recognition properties (up to 1mg template/g of polymer). Moreover polymers prepared selectively removed theophylline with a theophylline rebinding of 5.1 times higher than that of caffeine, a compound of similar structure. Drug release properties were also satisfactory (up to 95% of loaded theophylline in 7 days).  相似文献   

10.
Milk and microbial xanthine oxidases (XOs) were used for the construction of amperometric enzyme electrodes. Substrate specificity differences of these enzymes were studied. Of the two enzymes, only the microbial XO was found to oxidize theophylline, but not theobromine and caffeine. The substrate specificity of microbial XO was affected by pH, where the optimum for xanthine was 5.5, while for theophylline it was in the range from 6.5 to 8.5. The theophylline biosensor showed a low detection limit of 2 x 10(-7) M and signal linearity up to 5 x 10(-5) M. The sensitivity of the microbial XO electrode to theophylline could be selectively eliminated by immersion in alkaline phosphate solution, thus allowing for the construction of a blank electrode for differential measurements. The feasibility of this approach has been demonstrated by the determination of free (unbound) and total theophylline in blood samples. The biosensor exhibited good operational (>6 h) and shelf (>3 months) stability when trehalose was used as a stabilizer of the biocatalytic layer.  相似文献   

11.
Twelve healthy male volunteers who were diurnally active between 05:00 and 23:00 took part in a randomized, multiple-dose, double-blind, four-way, crossover study to determine the relationship between the dose of a nonsus-tained-release theophylline (NSRT) formulation added to the evening administration of a 12-hourly sustained-release theophylline (SRT) regimen and the elevation of the early morning (between 02:00 and 05:00) steady-state plasma theophylline concentration. The four treatments were 250 mg Nuelin SA (sustained-release theophylline) every 12 h plus either placebo or Nuelin liquid (non-sustained-release theophylline) equivalent to 100 mg, 200 mg, or 300 mg of theophylline. Without evening supplementation (placebo), the early morning plasma theophylline concentrations were 13% lower than the average 24-h concentration. but with evening supplementation the early morning plasma theophylline concentration could be raised up to and above the average 24-h Concentration. A prediction equation for the early morning plasma theophylline concentration as a function of the additional evening dose of Nuelin liquid, and of the steady-state evening trough plasma theophylline concentration without evening supplementation, was established. This prediction equation can be used to determine the additional evening dose of Nuelin liquid (administered at 19:00) needed to reduce early morning bronchoconstriction in asthmatic patients who are on a 12-hourly Nuelin SA (drug administered at 07:00 and 19:00) regimen.  相似文献   

12.
Twelve healthy male volunteers who were diurnally active between 05:00 and 23:00 took part in a randomized, multiple-dose, double-blind, four-way, crossover study to determine the relationship between the dose of a nonsus-tained-release theophylline (NSRT) formulation added to the evening administration of a 12-hourly sustained-release theophylline (SRT) regimen and the elevation of the early morning (between 02:00 and 05:00) steady-state plasma theophylline concentration. The four treatments were 250 mg Nuelin SA (sustained-release theophylline) every 12 h plus either placebo or Nuelin liquid (non-sustained-release theophylline) equivalent to 100 mg, 200 mg, or 300 mg of theophylline. Without evening supplementation (placebo), the early morning plasma theophylline concentrations were 13% lower than the average 24-h concentration. but with evening supplementation the early morning plasma theophylline concentration could be raised up to and above the average 24-h Concentration. A prediction equation for the early morning plasma theophylline concentration as a function of the additional evening dose of Nuelin liquid, and of the steady-state evening trough plasma theophylline concentration without evening supplementation, was established. This prediction equation can be used to determine the additional evening dose of Nuelin liquid (administered at 19:00) needed to reduce early morning bronchoconstriction in asthmatic patients who are on a 12-hourly Nuelin SA (drug administered at 07:00 and 19:00) regimen.  相似文献   

13.
A novel magnetic poly(ethylene glycol dimethacrylate-N-methacryloly-L-histidinemethylester) [m-poly(EGDMA-(MAH)] support was prepared for purification of immunoglobulin G (IgG) in a magnetically stabilized fluidized bed by suspension polymerization. Elemental analysis of the magnetic beads for nitrogen was estimated as 70 micromol MAH/g polymer. Magnetic poly(EGDMA-MAH) beads were used in the separation of immunoglobulin-G (IgG) from aqueous solutions and/or human plasma in a magnetically stabilized fluidized bed system. IgG adsorption capacity of the beads decreased with an increase in the flow rate. The maximum IgG adsorption was observed at pH 6.0 for MES buffer. IgG adsorption onto the m-poly(EGDMA) was negligible. Higher adsorption values (up to 262 mg/g) were obtained in which the m-poly(EGDMA-MAH) sorbents were used from aqueous solutions. Higher amounts of IgG were adsorbed from human plasma (up to 320 mg/g) with a purity of 87%. IgG molecules could be repeatedly adsorbed and desorbed with these sorbents without noticeable loss in their IgG adsorption capacity.  相似文献   

14.
The exudates from the incised trunk of Terminalia randii has been evaluated as controlled release excipient in comparison with xanthan gum and hydroxypropylmethylcellulose (HPMC) using carvedilol (water insoluble) and theophylline (water soluble) as model drugs. Matrix tablets were prepared by direct compression and the effects of polymer concentration and excipients—spray dried lactose, microcrystalline cellulose and dicalcium phosphate dihydrate on the mechanical (crushing strength (CS) friability (F) and crushing strength–friability ratio (CSFR)) and drug release properties of the matrix tablets were evaluated. The drug release data were fitted into different release kinetics equations to determine the drug release mechanism(s) from the matrix tablets. The results showed that the CS and CSFR increased with increase in polymer concentration while F decreased. The ranking of CS and CSFR was HPMC > terminalia > xanthan while the ranking was reverse for F. The ranking for t 25 (i.e. time for 25% drug release) at a polymer concentration of 60% was xanthan > terminalia = HPMC. The dissolution time, t 25, of theophylline matrices was significantly lower (p < 0.001) than those of carvedilol matrix tablets. Drug release from the matrices was by swelling, diffusion and erosion. The mechanical and drug release properties of the tablets were significantly (p < 0.05) dependent on the type and concentration of polymer and excipients used with the release mechanisms varying from Fickian to anomalous. Terminalia gum compared favourably with standard polymers when used in controlled release matrices and could serve as a suitable alternative to the standard polymers in drug delivery.  相似文献   

15.
Poly(vinylpyrrolidone) (PVP), a nonionic and nontoxic polymer with antifouling properties, has been synthesized via RAFT polymerization to obtain thiol-terminated PVP. We demonstrate that when the polymer is adsorbed onto the surface of colloidal silica particles, the terminal thiol groups of PVP remain accessible for chemical modification and lend themselves to the immobilization of ligands. We show that ligand attachment onto the surface via conjugation to PVP is reversible, as the polymer can be desorbed from the surface for conjugate and surface recovery. We present the conjugation of a model peptide and an oligonucleotide to PVP via the polymer terminal thiol and demonstrate that conjugates remain functional in molecular recognition assay. The developed technique offers a novel method to functionalize low-fouling surfaces for a variety of biomedical applications and presents opportunities to use PVP as a macromolecular drug carrier.  相似文献   

16.
The design of nanocomposite capacitors poses certain challenges due to the reduced dielectric strength resulting from the integration of typically high dielectric fillers into the polymer. In prior efforts it was demonstrated that increasing of the filler could lead to energy‐storage densities up to 19.3% above the neat polymer. To further enhance the energy density, a novel strategy is developed to align nanowires in a thermoplastic matrix by uniaxial stretching assembly. It is demonstrated that the energy‐storage capability of the nanocomposite can be enhanced through the alignment of lead zirconate titanate (PZT) nanowires (NWs) in the direction of the applied electric field compared to randomly oriented samples. The maximum energy density of the nanocomposites is as high as 1.28 J cm?3 at a volume fraction of 40% PZT NWs (aspect ratio around 14) with axis of alignment in the direction of the electric field. The findings of this research could lead to broader interest due to development of the piezoceramic nanocomposites with enhanced dielectric properties for use in next‐generation energy‐storage and conversion devices.  相似文献   

17.
Silica gel bead coated with macroporous chitosan layer (CTS-SiO2) was prepared, and the metal immobilized affinity chromatographic (IMAC) adsorbents could be obtained by chelating Cu2+, Zn2+, Ni2+ ions, respectively on CTS-SiO2, and trypsin could be adsorbed on the IMAC adsorbent through metal–protein interaction forces. Batch adsorption experiments show that adsorption capacity for trypsin on these IMAC adsorbent variated with change of pH. The maximal adsorption reached when the solution was in near neutral pH in all three IMAC adsorbents. Adsorption isothermal curve indicated that maximal adsorption capacity could be found in the Cu2+-CTS-SiO2 with the value of 4980 ± 125 IU g−1 of the adsorbent, while the maximal adsorption capacity for trypsin on Zn2+ and Ni2+ loaded adsorbent was 3762 ± 68 IU g−1 and 2636 ± 53 IU g−1, respectively. Trypsin immobilized on the IMAC beads could not be desorbed by water, buffer and salt solution if the pH was kept in the range of 5–10, and could be easily desorbed from the IMAC beads by acidic solution and metal chelating species such as EDTA and imidazole. The effect of chelated metal ions species on CTS-SiO2 beads on the activity and stability of immobilized trypsin was also evaluated and discussed. Trypsin adsorbed on Zn-IMAC beads retained highest amount of activity, about 78% of total activity could be retained. Although the Cu-IMAC showed highest affinity for trypsin, only 25.4% of the calculated activity was found on the beads, while the activity recovery found on Ni-IMAC beads was about 37.1%. A remarkable difference on stability of trypsin immobilized on three kinds of metal ion chelated beads during storage period was also found. Activity of trypsin on Cu-IMAC decreased to 24% of its initial activity after 1-week storage at 4 °C, while about 80% activity was retained on both Ni-IMAC and Zn-IMAC beads. Trypsin immobilized on Zn-CTS-SiO2 could effectively digest BSA revealed by HPLC peptide mapping.  相似文献   

18.
Gel matrices of scleroglucans from Sclerotium rolfsii ATCC 201126 (EPS I and EPS II, from 48-h and 72-h fermentations, respectively) were evaluated on their release kinetics of theophylline (Th). Equivalent polymer (2%, w/w) and Th (0.2%, w/w) concentrations showed almost coincident drug release patterns, independently of polymer molecular weight or the microstructural properties of gel matrices. Dynamic rheological studies of scleroglucan hydrogel structures (storage, G', and loss, G', moduli) indicated a solid-like behavior. Differences on pore size dimensions (EPS I=20 microm and EPS II=7 microm) were in accordance to the differences in G' (EPS I=113 Pa and EPS II=161 Pa), a fact likely related to variations in the cross-linking density of polymer networks. Compared to already known biopolymers, EPS I and EPS II at 0.5 g/L showed a good dispersing ability against particulate suspensions of activated charcoal, bentonite, CaCO(3), celite and quartz powder. Emulsifying ability of both EPSs at 2g/L was high (E=56-60%) when tested with kerosene, moderate ( approximately 30%) with hexadecane, and negligible in the presence of olive oil-in-water emulsions.  相似文献   

19.
The reactivity of pial arteries to the perivascular microapplication of artificial cerebrospinal fluids with mounting concentrations of adenosine (10(-11)-10(-3) M), K+ (0-10 mM), and H+ (pH 5.1-7.6) was determined in chloralose-anesthetized ventilated cats during normoxic control conditions and during moderate normocapnic arterial hypoxia (arterial Po2 47 Torr). Hypoxia induced a significant mean pial arterial dilatation of 18-29% in the various types of experiments. The pial arterial reactivity to each of the tested factors remained unchanged during hypoxia compared with normoxia. The hypoxic vasodilatation could not be reduced by the perivascular microapplication of theophylline (10(-5) and 5 X 10(-5) M). Systemic theophylline (50-75 mumol/kg, iv), regardless of whether given during or before hypoxia, did not attenuate the hypoxic vasodilatation, although it blocked dilatations induced by the perivascular microapplication of adenosine during normoxia. The present study shows that 1) local metabolic factors are vasoactive during moderate hypoxia; therefore they could mediate the hypoxic dilatation of brain vessels; 2) systemic theophylline can block vascular adenosine receptors; 3) since local theophylline had no effect on the hypoxic dilatation of pial arteries, adenosine may not be the main causative factor for the hypoxic hyperemia.  相似文献   

20.
Effects of cholera toxin, cholera anatoxin, theophylline and dibutyryl cyclic AMP (db-cAMP) on the PHA-induced DNA synthesis have been studied. It was shown that toxin, db-cAMP and theophylline suppressed mitogen-induced 3H-TdR incorporation and blast-transformation in a dose-related manner. When both toxin and theophylline were given together to PHA-stimulated lymphocytes, the inhibitory effects of these two agents were additive. The inhibitory effects of db-cAMP and theophylline were additive too. This inhibitory effects could be due to the elevation of intracellular cAMP. Cholera anatoxin exerted an inhibitory action on the PHA-stimulated lymphocytes. The inhibitory effects on lymphocyte DNA synthesis by anatoxin and theophylline were not additive. These results suggest that the effects of cholera toxin are mediated by cyclic AMP, but effects of cholera anatoxin may be associated with some other mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号