首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In ribosomal protein S12 mutant or L24 mutant the expression of λN gene was depressed at translational level. To study its mechanism the λN gene region of λN -lacZ gene fusion was trimmed from its 5′ end to 3′ end with DNA exonuclease III (DNA cxoIII) in order to alter the TIR (translational initiation region) and the ding region of λN gene. After DNA sequencing 23 species of different λN-lacZ fused genes were obtained. The β-galactosidase activities of these deletants in ribosomal protein mutant were compared with that in wild type strain. The result indicated that (i) S12 mutant could affect 305 subunit’s binding to the TIR of λN gene messenger and cause the difficulty in forming 30s initiation complex and then decrease the efficiency of translational initiation; (ii) in S12 mutant the coding region of λN gene alw affected the expression λN gene; (iii) in L24 mutant the inhibition of λN gene expression was not related to translational initiation and the 5′ end of the coding region of λN gene, but related to the 3′ end of λN gene.  相似文献   

2.
3.
4.
5.
6.
The ribosomal GTPase associated center constitutes the ribosomal area, which is the landing platform for translational GTPases and stimulates their hydrolytic activity. The ribosomal stalk represents a landmark structure in this center, and in eukaryotes is composed of uL11, uL10 and P1/P2 proteins. The modus operandi of the uL11 protein has not been exhaustively studied in vivo neither in prokaryotic nor in eukaryotic cells. Using a yeast model, we have brought functional insight into the translational apparatus deprived of uL11, filling the gap between structural and biochemical studies. We show that the uL11 is an important element in various aspects of ‘ribosomal life’. uL11 is involved in ‘birth’ (biogenesis and initiation), by taking part in Tif6 release and contributing to ribosomal subunit-joining at the initiation step of translation. uL11 is particularly engaged in the ‘active life’ of the ribosome, in elongation, being responsible for the interplay with eEF1A and fidelity of translation and contributing to a lesser extent to eEF2-dependent translocation. Our results define the uL11 protein as a critical GAC element universally involved in trGTPase ‘productive state’ stabilization, being primarily a part of the ribosomal element allosterically contributing to the fidelity of the decoding event.  相似文献   

7.
Sudip Kundu 《Proteins》2018,86(8):827-832
Do coding and regulatory segments of a gene co‐evolve with each‐other? Seeking answers to this question, here we analyze the case of Escherichia coli ribosomal protein S15, that represses its own translation by specifically binding its messenger RNA (rpsO mRNA) and stabilizing a pseudoknot structure at the upstream untranslated region, thus trapping the ribosome into an incomplete translation initiation complex. In the absence of S15, ribosomal protein S1 recognizes rpsO and promotes translation by melting this very pseudoknot. We employ a robust statistical method to detect signatures of positive epistasis between residue site pairs and find that biophysical constraints of translational regulation (S15‐rpsO and S1‐rpsO recognition, S15‐mediated rpsO structural rearrangement, and S1‐mediated melting) are strong predictors of positive epistasis. Transforming the epistatic pairs into a network, we find that signatures of two different, but interconnected regulatory cascades are imprinted in the sequence‐space and can be captured in terms of two dense network modules that are sparsely connected to each other. This network topology further reflects a general principle of how functionally coupled components of biological networks are interconnected. These results depict a model case, where translational regulation drives characteristic residue‐level epistasis—not only between a protein and its own mRNA but also between a protein and the mRNA of an entirely different protein.  相似文献   

8.
9.
The rplI gene encoding the ribosomal protein L9 was found 4 kbp downstream from the desA gene, but on the opposite strand, in the genome of the cyanobacterium Synechocystis PCC6803. The deduced amino acid sequence is homologous to the sequences of the L9 proteins from Escherichia coli and chloroplasts of Arabidopsis and pea. The gene is present as a single copy in the chromosome and is transcribed as a mRNA of 0.64 kb. An open reading frame of unknown function (ORF291) was found in the upstream region of the rplI gene.  相似文献   

10.
11.
Although the role of introns in eucaryotic nuclear genes has been much debated, it remains underinvestigated in fungi. The AS1 gene of Podospora anserina contains three introns and encodes a ribosomal protein (S12) belonging to the well-conserved bacterial S19 family. We attempted to complement the highly pleiotropic mutation AS1-4 with a cDNA encoding the homologous human (S15) protein (rig gene) under the control of the AS1 promoter. In a control experiment, the AS1 + cDNA was unable to complement fully the AS1-4 mutation. It was assumed that the AS1 cDNA was not well expressed and that the AS1 gene needed intron(s) to be efficiently expressed. Addition of the first intron of the AS1 gene to the AS1 and rig cDNAs did indeed allow complementation of all the phenotypic defects of the AS1-4 mutation. These data lead to two main conclusions. First, the human S15 ribosomal protein is functional in Podospora. Second, full expression of the Podospora AS1 gene requires at least one intron. Received: 26 April 1996 / Accepted: 22 August 1996  相似文献   

12.
The ribosomal protein L22 is a core protein of the large ribosomal subunit interacting with all domains of the 23S rRNA. The triplet Met82-Lys83-Arg84 deletion in L22 from Escherichia coli renders cells resistant to erythromycin which is known as an inhibitor of the nascent peptide chain elongation. The crystal structure of the Thermus thermophilus L22 mutant with equivalent triplet Leu82-Lys83-Arg84 deletion has been determined at 1.8A resolution. The superpositions of the mutant and the wild-type L22 structures within the 50S subunits from Haloarcula marismortui and Deinococcus radiodurans show that the mutant beta-hairpin is bent inward the ribosome tunnel modifying the shape of its narrowest part and affecting the interaction between L22 and 23S rRNA. 23S rRNA nucleotides of domain V participating in erythromycin binding are located on the opposite sides of the tunnel and are brought to those positions by the interaction of the 23S rRNA with the L22 beta-hairpin. The mutation in the L22 beta-hairpin affects the orientation and distances between those nucleotides. This destabilizes the erythromycin-binding "pocket" formed by 23S rRNA nucleotides exposed at the tunnel surface. It seems that erythromycin, while still being able to interact with one side of the tunnel but not reaching the other, is therefore unable to block the polypeptide growth in the drug-resistant ribosome.  相似文献   

13.
14.
15.
The crystal structures of unbound protein L1 and its complexes with ribosomal and messenger RNAs were analyzed. The apparent association rate constants for L1-RNA complexes proved to depend on the conformation of unbound L1. It was suggested that L1 binds to rRNA with a higher affinity than to mRNA, owing to additional interactions between domain II of L1 and the loop rRNA region, which is absent in mRNA. Published in Russian in Molekulyarnaya Biologiya, 2006, Vol. 40, No. 4, pp. 650–657. The article was translated by the authors.  相似文献   

16.
In order to examine the possible involvements of Ca2+/calmodulin-dependent protein kinases (CaM kinases) in the regulation of ribosomal functions, we tested the phosphorylation of rat ribosomal protein S19 (RPS19) by various CaM kinases in vitro . We found that CaM kinase Iα, but not CaM kinase Iβ1, Iβ2, II, or IV, robustly phosphorylated RPS19. From the consensus phosphorylation site sequence, Ser59, Ser90, and Thr124 were likely to be phosphorylated; therefore, we mutated each amino acid to alanine and found that the mutation of Ser59 to alanine strongly attenuated phosphorylation by CaM kinase Iα, suggesting that Ser59 was a major phosphorylation site. Furthermore, we produced a specific antibody against RPS19 phosphorylated at Ser59, and found that Ser59 was phosphorylated both in GT1-7 cells and rat brain. Phosphorylation of RPS19 in GT1-7 cells was inhibited by KN93, an inhibitor of CaM kinases. Immunoblot analysis after subcellular fractionation of rat brain demonstrated that phosphorylated RPS19 was present in 80S ribosomes. Phosphorylation of RPS19 by CaM kinase Iα augmented the interaction of RPS19 with the previously identified S19 binding protein. These results suggest that CaM kinase Iα regulates the functions of RPS19 through phosphorylation of Ser59.  相似文献   

17.
【目的】了解杏褪绿卷叶植原体新疆分离物的系统发育关系及遗传分化,确定其分类地位。【方法】利用植原体核糖体蛋白(rp)基因的特异性引物rpF1/rpR1对新疆轮台县托克逊县杏褪绿卷叶病植株总DNA进行PCR扩增,并对部分扩增片段克隆、测序及序列分析。【结果】获得杏褪绿卷叶植原体新疆分离物rp基因片段大小为1196 bp,该片段包含部分rpS19以及rpL22和rpS3基因的全部序列。序列相似性和系统进化分析表明,杏褪绿卷叶植原体新疆分离物与16SrⅤ-rp亚组中的各代表性植原体的rp基因核苷酸序列相似性达到95.7%~99.3%,其中与rpⅤ-C亚组的甜樱桃绿化植原体和枣疯病植原体的相似性最高,核苷酸及氨基酸相似性分别达到99.2%~99.3%和98.3%~98.4%。进一步虚拟RFLP分析,发现杏褪绿卷叶植原新疆分离物rp基因的酶切图谱与rpⅤ-C亚组成员相似性最高,但在MseⅠ、SspⅠ和TaqⅠ的酶切位点上存在差异。综上初步判断其可能属于16SrⅤ组(榆树黄化组)中的一个新rp亚组。【结论】本研究首次报道了杏褪绿卷叶植原体新疆分离物的rp基因序列,确定了其分类地位,为杏褪绿卷叶病的早期诊断和检测提供了基础。  相似文献   

18.
Summary The trmD operon of Escherichia coli consists of the genes for the ribosomal protein (r-protein) S16, a 21 kDa protein (21K) of unknown function, the tRNA(m1G37)methyltransferase (TrmD), and r-protein L19, in this order. Previously we have shown that the steady-state amount of the two r-proteins exceeds that of the 21K and TrmD proteins 12- and 40-fold, respectively, and that this differential expression is solely explained by translational regulation. Here we have constructed translational gene fusions of the trmD operon and lacZ. The expression of a lacZ fusion containing the first 18 codons of the 21K protein gene is 15-fold higher than the expression of fusions containing 49 or 72 codons of the gene. This suggests that sequences between the 18th and the 49th codon may act as a negative element controlling the expression of the 21K protein gene. Evidence is presented which demonstrates that this regulation is achieved by reducing the efficiency of translation.  相似文献   

19.
The organization of ribosomal proteins in 16 prokaryotic genomes was studied as an example of comparative genome analyses of gene systems. Hypothetical ribosomal protein-containing operons were constructed. These operons also contained putative genes and other non-ribosomal genes. The correspondences among these genes across different organisms were clarified by sequence homology computations. In this way a cross tabulation of 70 ribosomal proteins genes was constructed. On average, these were organized into 9-14 operons in each genome. There were also 25 non-ribosomal or putative genes in these mainly ribosomal protein operons. Hence the table contains 95 genes in total. It was found that: (i) the conservation of the block of about 20 r-proteins in the L3 and L4 operons across almost the entire eubacteria and archaebacteria is remarkable; (ii) some operons only belong to eubacteria or archaebacteria; (iii) although the ribosomal protein operons are highly conserved within domain, there are fine variations in some operons across different organisms within each domain, and these variations are informative on the evolutionary relations among the organisms. This method provides a new potential for studying the origin and evolution of old species.  相似文献   

20.
The pea mitochondrial genome contains a truncated rps7 gene lacking ca. 40 codons at its 5 terminus. This single-copy sequence is immediately downstream of and slightly overlapping an actively transcribed and edited reading frame of 744 bp (designated ccb248) homologous to the bacterial helC gene which encodes a subunit of the ABC-type heme transporter involved in cytochrome c biogenesis. This region of mitochondrial DNA appears recombinogenic, and the carboxy-termini of helC-type proteins are predicted to vary in sequence and length among plants. Sequences corresponding to the 5 coding region of rps7 were not detected elsewhere in the pea mitochondrial genome using wheat rps7 probes, and only a very short internal rps7 segment was observed in soybean mitochondrial DNA. The presence of rps7-homologous sequences in the nuclear genomes of pea and soybean is consistent with the recent transfer of a functional mitochondrial rps7 gene to the nucleus in certain plant lineages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号