首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In ribosomal protein S12 mutant or L24 mutant the expression of λN gene was depressed at translational level. To study its mechanism the λN gene region of λN -lacZ gene fusion was trimmed from its 5′ end to 3′ end with DNA exonuclease III (DNA cxoIII) in order to alter the TIR (translational initiation region) and the ding region of λN gene. After DNA sequencing 23 species of different λN-lacZ fused genes were obtained. The β-galactosidase activities of these deletants in ribosomal protein mutant were compared with that in wild type strain. The result indicated that (i) S12 mutant could affect 305 subunit’s binding to the TIR of λN gene messenger and cause the difficulty in forming 30s initiation complex and then decrease the efficiency of translational initiation; (ii) in S12 mutant the coding region of λN gene alw affected the expression λN gene; (iii) in L24 mutant the inhibition of λN gene expression was not related to translational initiation and the 5′ end of the coding region of λN gene, but related to the 3′ end of λN gene.  相似文献   

2.
Translation initiation is governed by a limited number of mRNA sequence motifs within the translation initiation region (TIR). In bacteria and bacteriophages, one of the most important determinants is a Shine-Dalgarno (SD) sequence that base pairs with the anti-SD sequence GAUCACCUCCUUA localized in the 3′ end of 16S rRNA. This work assesses a diversity of TIR features in phage T4, focusing on the SD sequence, its spacing to the start codon and relationship to gene expression and essentiality patterns. Analysis shows that GAGG is predominant of all core SD motifs in T4 and its related phages, particularly in early genes. Possible implication of the RegB activity is discussed.  相似文献   

3.
4.
A putative implication 3′-terminal 18S rRNA segment in the cap-independent initiation of translation on plant ribosomes was studied. It was shown that 3′-terminal segment (nucleotides 1777–1811) of 18S rRNA including the last hairpin 45 was accessible for complementary interactions within 40S ribosomal subunits. Oligonucleotides complementary to this segment of rRNA, when added to wheat germ cell-free protein synthesizing system, specifically inhibited translation of uncapped reporter mRNA encoding β-glucuronidase. In the 5′-untranslated region (UTR), the reporter mRNA contained a leader sequence of potato virus Y (PVY) genomic RNA with fragments complementary to the region 1777–1811. A sequence corresponding to nucleotides 291–316 of PVY, which was complementary to most of the 3′-terminal 18S rRNA segment 1777–1808, was shown to enhance translational efficiency of the reporter mRNAs when placed into 5′-UTR. The obtained results suggest that complementary interactions between 5′-UTR of mRNA and 3′-terminal segment of 18S rRNA can take place during cap-independent translation initiation.  相似文献   

5.
6.
Translational riboswitches are bacterial gene regulatory elements found in the 5′-untranslated region of mRNAs. They operate through a conformational refolding reaction that is triggered by a concentration change of a modulating small molecular ligand. The translation initiation region (TIR) is either released from or incorporated into base pairing interactions through the conformational switch. Hence, initiation of translation is regulated by the accessibility of the Shine-Dalgarno sequence and start codon. Interaction with the 30S ribosome is indispensable for the structural switch between functional OFF and ON states. However, on a molecular level it is still not fully resolved how the ribosome is accommodated near or at the translation initiation region in the context of translational riboswitches. The standby model of translation initiation postulates a binding site where the mRNA enters the ribosome and where it resides until the initiation site becomes unstructured and accessible. We here investigated the adenine-sensing riboswitch from Vibrio vulnificus. By application of a 19F labelling strategy for NMR spectroscopy that utilizes ligation techniques to synthesize differentially 19F labelled riboswitch molecules we show that nucleotides directly downstream of the riboswitch domain are first involved in productive interaction with the 30S ribosomal subunit. Upon the concerted action of ligand and the ribosomal protein rS1 the TIR becomes available and subsequently the 30S ribosome can slide towards the TIR. It will be interesting to see whether this is a general feature in translational riboswitches or if riboswitches exist where this region is structured and represent yet another layer of regulation.  相似文献   

7.
8.
B Schauder  J E McCarthy 《Gene》1989,78(1):59-72
A range of translational initiation regions (TIR) was created by combining synthetic DNA fragments derived from the atpB-atpE intercistronic sequence of Escherichia coli with the cDNA sequence encoding mature human interleukin 2 (IL-2), the E. coli fnr gene, or an fnr::lacZ gene fusion. Both the overall rates of gene expression and the relative concentrations and stabilities of the corresponding mRNA species were estimated in strains bearing the constructs on plasmids. These measurements served as the basis for analyses of the relationship between the structure of the TIR and the true rates of translation that it promotes. The constructs involving the IL-2 cDNA were predicted to allow much less stable secondary structure within the TIR than those involving the N-terminal region of the fnr gene. Thus by combining one set of upstream sequences with two different types of N-terminal coding sequence, it was possible to distinguish between the respective influences of primary and secondary structure upon initiation. The data indicate that in the presence of a given Shine-Dalgarno (SD)/start codon combination, the decisive factor for translational initiation efficiency is the stability of base pairing involving, or in the vicinity of, this region. The sequences contributing to this secondary structure can be many bases upstream of the SD region and/or downstream of the start codon. There was no indication that the specific base sequence upstream of the SD region could, other than to the extent that it contributed to the local secondary structure, significantly influence the efficiency of translational initiation.  相似文献   

9.
10.
11.
The ApoE gene responsible for the Alzheimer's disease has been examined to identify functional consequences of single-nucleotide polymorphisms (SNPs). Eighty-eight SNPs have been identified in the ApoE gene in which 31 are found to be nonsynonymous, 8 of them are coding synonymous, 33 are found to be in intron, and 3 are in untranslated region. The SNPs found in the untranslated region consisted of two SNPs from 5′ and one SNP from the 3′. Twenty-nine percent of the identified nsSNPs have been reported as damaging. In the analysis of SNPs in the UTR regions, it has been recognized that rs72654467 from 5′ and rs71673244 from 5′ and 3′ are responsible for the alteration in levels of expression. Both native and mutant protein structures were analyzed along with the stabilization residues. It has been concluded that among all SNPs of ApoE, the mutation in rs11542041 (R132S) has the most significant effect on functional variation.  相似文献   

12.
13.
Yeast ribosomal protein S33 is encoded by an unsplit gene.   总被引:12,自引:8,他引:4       下载免费PDF全文
The structure of the gene coding for ribosomal protein S33, - a protein which escapes the coordinate control of ribosomal protein synthesis in rna 2 mutant cells -, was determined by sequence analysis. The gene comprises an uninterrupted coding region of 204 nucleotides encoding a protein of 8.9 kD. Like for other yeast ribosomal protein genes that have been sequenced so far, a relatively strong codon bias was observed. By S1 nuclease mapping the 5' end of the S33 mRNA was shown to be located at 11 to 15 nucleotides upstream from the initiation codon.  相似文献   

14.
15.
A segment of Bacillus subtilis chromosomal DNA homologous to the Escherichia coli spc ribosomal protein operon was isolated using cloned E. coli rplE (L5) DNA as a hybridization probe. DNA sequence analysis of the B. subtilis cloned DNA indicated a high degree of conservation of spc operon ribosomal protein genes between B. subtilis and E. coli. This fragment contains DNA homologous to the promoter-proximal region of the spc operon, including coding sequences for ribosomal proteins L14, L24, L5, S14, and part of S8; the organization of B. subtilis genes in this region is identical to that found in E. coli. A region homologous to the E. coli L16, L29 and S17 genes, the last genes of the S10 operon, was located upstream from the gene for L14, the first gene in the spc operon. Although the ribosomal protein coding sequences showed 40-60% amino acid identity with E. coli sequences, we failed to find sequences which would form a structure resembling the E. coli target site for the S8 translational repressor, located near the beginning of the L5 coding region in E. coli, in this region or elsewhere in the B. subtilis spc DNA.  相似文献   

16.
The binding of the 18S rRNA of the 40S subunits of wheat germ ribosomes to an oligodeoxyribonucleotide complementary to the 1112–1123 region of the central domain of this RNA molecule has been studied. The selective binding of this oligomer to the complementary RNA fragment and the inhibition of the translation of uncapped chimeric RNA containing enhancer sequences in the 5′-untranslated region upstream of the reporter sequence coding for β-glucuronidase has been shown in a cell-free protein-synthesizing system. The use of a derivative of the aforementioned oligomer containing an alkylating group at the 5′ end allowed for the demonstration that the 1112–1123 region of 18S RNA can form a heteroduplex with the complementary sequence of the oligomer. The data obtained show that the 1112–1123 region in loop 27 of the central domain of 18S RNA of 40S ribosomal subunits is exposed on the subunit surface and probably participates in the cap-independent binding of the subunits to mRNA due to the complementary interaction with the enhancer sequences.  相似文献   

17.
18.
Cyanobacterial 16S ribosomal RNA gene diversity was examined in a benthic mat on Fildes Peninsula of King George Island (62o09′54.4′′S, 58o57′20.9′′W), maritime Antarctica. Environmental DNA was isolated from the mat, a clone library of PCR-amplified 16S rRNA gene fragments was prepared, and amplified ribosomal DNA restriction analysis (ARDRA) was done to assign clones to seven groups. Low cyanobacterial diversity in the mat was suggested in that 83% of the clones were represented by one ARDRA group. DNA sequences from this group had high similarity with 16S rRNA genes of Tychonema bourrellyi and T. bornetii isolates, whose geographic origins were southern Norway and Northern Ireland. Cyanobacterial morphotypes corresponding to Tychonema have not been reported in Antarctica, however, this morphotype was previously found at Ward Hunt Lake (83oN), and in western Europe (52oN). DNA sequences of three of the ARDRA groups had highest similarity with 16S rDNA sequences of the Tychonema group accounting for 9.4% of the clones. Sequences of the remaining three groups (7.6%) had highest similarity with 16S rRNA genes of uncultured cyanobacteria clones from benthic mats of Lake Fryxell and fresh meltwater on the McMurdo Ice Shelf.  相似文献   

19.
There are three non-allelic isogenes encoding phosphoribosylanthranilate isomerase (PAI) inArabidopsis thaliana. The expression plasmids were constructed by fusion of the GUS reporter gene to the three PAI promoters with or without the 5′ region encoding PAI N-terminal polypeptides and transferred into Arabidopsis plants byAgrobacterium tumefaciens. Analysis of GUS activity revealed that the PAI 5′ coding region was necessary for high expression of GUS activity. GUS activity in transgenic plants transformed with the expression plasmids containing the 5′ coding region of PAH or PAI3 was 60–100-fold higher than that without the corresponding 5′ region. However, the effect of 5’ coding region of PAI2 gene on the GUS activity was very small (only about 1 time difference). The GUS histochemical staining showed a similar result as revealed by GUS activity assay. It was expressed in the mesophyll cells and guard cells, but not in the epidermic cells, indicating that the N-terminal polypeptides encoded by the 5′ region of PAI genes have the function of PTP.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号