共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Qianghua Lv Xiao Chu Xinyu Yao Kelong Ma Yong Zhang Xuming Deng 《Journal of cellular and molecular medicine》2019,23(7):4679-4688
The invasiveness of Salmonella enterica serovar Typhimurium (S. Typhimurium) is closely associated with the Salmonella pathogenicity island (SPI)‐encoded type Ⅲ secretion system (T3SS), which can directly inject a series of effector proteins into eukaryotic cells to enable bacterial infection. In this study, syringaldehyde was identified as an effective inhibitor of the S. Typhimurium T3SS using an effector protein‐lactamase fusion reporter system. Syringaldehyde treatment could inhibit the expression of important effector proteins (SipA, SipB and SipC) at a concentration of 0.18 mM without affecting bacterial growth. Additionally, significant inhibition of bacterial invasion and cellular injury was observed following the syringaldehyde treatment in the co‐infection system of HeLa cells and S. Typhimurium. Furthermore, treatment with syringaldehyde provided systemic protection to mice infected with S. Typhimurium, reducing mortality (40.00%) and bacterial loads and relieving caecal damage and systemic inflammation. The results presented in this study indicate that syringaldehyde significantly affects T3SS activity and is a potential leading compound for treating S. Typhimurium infections. 相似文献
4.
Disruption of type III secretion in Salmonella enterica serovar Typhimurium by external guide sequences 下载免费PDF全文
The type III secretion system involved in Salmonella enterica serovar Typhimurium invasion of host cells has been disrupted using inducibly expressed oligonucleotide external guide sequences (EGSs) complementary to invB or invC mRNA. These EGSs direct single site cleavage in these mRNAs by endogenous RNase P, and their expression in Salmonella results in invC mRNA and InvC protein depletion, decreased type III secretion and interference with host cell invasion. Comparison of these effects with those from studies of Salmonella invB and invC mutants suggests that invB EGSs have polar effects on invC mRNA. 相似文献
5.
One of the most common modes of secretion of toxins in gram-negative bacteria is via the type three secretion system (TTSS),
which enables the toxins to be specifically exported into the host cell. The hilA gene product is a key regulator of the expression of the TTSS located on the pathogenicity island (SPI-1) of Salmonella enterica serovar Typhimurium. It has been proposed earlier that the regulation of HilA expression is via a complex feedforward loop
involving the transactivators HilD, HilC and RtsA. In this paper, we have constructed a mathematical model of regulation of
hilA-promoter by all the three activators using two feedforward loops. We have modified the model to include additional complexities
in regulation such as the proposed positive feedback and cross regulations of the three transactivators. Results of the various
models indicate that the basic model involving two Type I coherent feedforward loops with an OR gate is sufficient to explain
the published experimental observations. We also discuss two scenarios where the regulation can occur via monomers or heterodimers
of the transactivators and propose experiments that can be performed to distinguish the two modes of regulator function.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
6.
Emiliano Cohen Shalevet Azriel Oren Auster Adiv Gal Carmel Zitronblat Svetlana Mikhlin Felix Scharte Michael Hensel Galia Rahav Ohad Gal-Mor 《PLoS pathogens》2021,17(3)
Salmonella enterica is a diverse bacterial pathogen and a primary cause of human and animal infections. While many S. enterica serovars present a broad host-specificity, several specialized pathotypes have been adapted to colonize and cause disease in one or limited numbers of host species. The underlying mechanisms defining Salmonella host-specificity are far from understood. Here, we present genetic analysis, phenotypic characterization and virulence profiling of a monophasic S. enterica serovar Typhimurium strain that was isolated from several wild sparrows in Israel. Whole genome sequencing and complete assembly of its genome demonstrate a unique genetic signature that includes the integration of the BTP1 prophage, loss of the virulence plasmid, pSLT and pseudogene accumulation in multiple T3SS-2 effectors (sseJ, steC, gogB, sseK2, and sseK3), catalase (katE), tetrathionate respiration (ttrB) and several adhesion/ colonization factors (lpfD, fimH, bigA, ratB, siiC and siiE) encoded genes. Correspondingly, this strain demonstrates impaired biofilm formation, intolerance to oxidative stress and compromised intracellular replication within non-phagocytic host cells. Moreover, while this strain showed attenuated pathogenicity in the mouse, it was highly virulent and caused an inflammatory disease in an avian host. Overall, our findings demonstrate a unique phenotypic profile and genetic makeup of an overlooked S. Typhimurium sparrow-associated lineage and present distinct genetic signatures that are likely to contribute to its pathoadaptation to passerine birds. 相似文献
7.
InvB is required for type III-dependent secretion of SopA in Salmonella enterica serovar Typhimurium 下载免费PDF全文
The Salmonella effector protein SopA is translocated into host cells via the SPI-1 type III secretion system (TTSS) and contributes to enteric disease. We found that the chaperone InvB binds to SopA and slightly stabilizes it in the bacterial cytosol and that it is required for its transport via the SPI-1 TTSS. 相似文献
8.
9.
10.
Salmonella enterica serovar Typhimurium invades intestinal epithelial cells using a type three secretion system (TTSS) encoded on Salmonella Pathogenicity Island 1 (SPI1). The SPI1 TTSS injects effector proteins into the cytosol of host cells where they promote actin rearrangement and engulfment of the bacteria. We previously identified RtsA, an AraC-like protein similar to the known HilC and HilD regulatory proteins. Like HilC and HilD, RtsA activates expression of SPI1 genes by binding upstream of the master regulatory gene hilA to induce its expression. HilA activates the SPI1 TTSS structural genes. Here we present evidence that hilA expression, and hence the SPI1 TTSS, is controlled by a feedforward regulatory loop. We demonstrate that HilC, HilD and RtsA are each capable of independently inducing expression of the hilC, hilD and rtsA genes, and that each can independently activate hilA. Using competition assays in vivo, we show that each of the hilA regulators contribute to SPI1 induction in the intestine. Of the three, HilD has a predominant role, but apparently does not act alone either in vivo or in vitro to sufficiently activate SPI1. The two-component regulatory systems, SirA/BarA and OmpR/EnvZ, function through HilD, thus inducing hilC, rtsA and hilA. However, the two-component systems are not responsible for environmental regulation of SPI1. Rather, we show that 'SPI1 inducing conditions' cause independent activation of the rtsA, hilC and hilD genes in the absence of known regulators. Our model of SPI1 regulation provides a framework for future studies aimed at understanding this complicated regulatory network. 相似文献
11.
Steele-Mortimer O Brumell JH Knodler LA Méresse S Lopez A Finlay BB 《Cellular microbiology》2002,4(1):43-54
Type III secretion systems (TTSS) are used by Gram-negative pathogens to translocate proteins into eukaryotic host cells. Salmonella enterica serovar Typhimurium (S. Typhimurium) has two of these specialized systems, which are encoded on separate Salmonella pathogenicity islands (SPI-1 and SPI-2) and translocate unique sets of effectors. The specific roles of these systems in Salmonella pathogenesis remain undefined, although SPI-1 is required for bacterial invasion of epithelial cells and SPI-2 for survival/replication in phagocytic cells. However, because SPI-1 TTSS mutants are invasion-incompetent, the role of this TTSS in post-invasion processes has not been investigated. In this study, we have used two distinct methods to internalize a non-invasive SPI-1 TTSS mutant (invA) into cultured epithelial cells: (i) co-internalization with wild-type S. Typhimurium (SPI-1-dependent) and (ii) complementation with the Yersinia pseudotuberculosis invasin (inv) gene (SPI-1-independent). In both cases, internalized invA mutants were unable to replicate intracellularly, indicating that SPI-1 effectors are essential for this process and cannot be complemented by wild-type bacteria in the same cell. Analysis of the biogenesis of SCVs showed that vacuoles containing mutant bacteria displayed abnormal maturation that was dependent on the mechanism of entry. Manipulation of Salmonella-containing vacuole (SCV) biogenesis by pharmacologically perturbing membrane trafficking in the host cell increased intracellular replication of wild-type but not mutant S. Typhimurium This demonstrates a previously unknown role for SPI-1 in vacuole biogenesis and intracellular survival in non-phagocytic cells. 相似文献
12.
13.
Several pathogenic bacteria have evolved a specialized protein secretion system termed type III to secrete and deliver effector proteins into eukaryotic host cells. Salmonella enterica serovar Typhimurium uses one such system to mediate entry into nonphagocytic cells. This system is composed of more than 20 proteins which are encoded within a pathogenicity island (SPI-1) located at centisome 63 of its chromosome. A subset of these components form a supramolecular structure, termed the needle complex, that resembles the flagellar hook-basal body complex. The needle complex is composed of a multiple-ring cylindrical base that spans the bacterial envelope and a needle-like extension that protrudes from the bacterial outer surface. Although the components of this structure have been identified, little is known about its assembly. In this study we examined the effect of loss-of-function mutations in each of the type III secretion-associated genes encoded within SPI-1 on the assembly of the needle complex. This analysis indicates that the assembly of this organelle occurs in discrete, genetically separable steps. A model for the assembly pathway of this important organelle is proposed that involves a sec-dependent step leading to the assembly of the base substructure followed by a sec-independent process resulting in the assembly of the needle portion. 相似文献
14.
15.
16.
17.
Winnen B Schlumberger MC Sturm A Schüpbach K Siebenmann S Jenny P Hardt WD 《PloS one》2008,3(5):e2178
Background
Type III secretion systems (TTSS) are employed by numerous pathogenic and symbiotic bacteria to inject a cocktail of different “effector proteins” into host cells. These effectors subvert host cell signaling to establish symbiosis or disease.Methodology/Principal Findings
We have studied the injection of SipA and SptP, two effector proteins of the invasion-associated Salmonella type III secretion system (TTSS-1). SipA and SptP trigger different host cell responses. SipA contributes to triggering actin rearrangements and invasion while SptP reverses the actin rearrangements after the invasion has been completed. Nevertheless, SipA and SptP were both pre-formed and stored in the bacterial cytosol before host cell encounter. By time lapse microscopy, we observed that SipA was injected earlier than SptP. Computer modeling revealed that two assumptions were sufficient to explain this injection hierarchy: a large number of SipA and SptP molecules compete for transport via a limiting number of TTSS; and the TTSS recognize SipA more efficiently than SptP.Conclusions/Significance
This novel mechanism of hierarchical effector protein injection may serve to avoid functional interference between SipA and SptP. An injection hierarchy of this type may be of general importance, allowing bacteria to precisely time the host cell manipulation by type III effectors. 相似文献18.
Quantitative proteomic analysis of host epithelial cells infected by Salmonella enterica serovar Typhimurium 下载免费PDF全文
Systems‐level analyses have the capability to offer new insight into host–pathogen interactions on the molecular level. Using Salmonella infection of host epithelial cells as a model system, we previously analyzed intracellular bacterial proteome as a window into pathogens’ adaptations to their host environment [Infect. Immun. 2015; J. Proteome Res. 2017]. Herein we extended our efforts to quantitatively examine protein expression of host cells during infection. In total, we identified more than 5000 proteins with 194 differentially regulated proteins upon bacterial infection. Notably, we found marked induction of host integrin signaling and glycolytic pathways. Intriguingly, up‐regulation of host glucose metabolism concurred with increased utilization of glycolysis by intracellular Salmonella during infection. In addition to immunoblotting assays, we also verified the up‐regulation of PARP1 in the host nucleus by selected reaction monitoring and immunofluorescence studies. Furthermore, we provide evidence that PARP1 elevation is likely specific to Salmonella infection and independent of one of the bacterial type III secretion systems. Our work demonstrates that unbiased high‐throughput proteomics can be used as a powerful approach to provide new perspectives on host–pathogen interactions. 相似文献
19.
The membrane topology of the ZntB Zn(2+) transport protein of Salmonella enterica serovar Typhimurium was determined by constructing deletion derivatives of the protein and genetically fusing them to blaM or lacZ cassettes. The enzymatic activities of the hybrid proteins indicate that ZntB is a bitopic integral membrane protein consisting largely of two independent domains. The first 266 amino acids form a large, highly charged domain within the cytoplasm, while the remaining 61 residues form a small membrane domain containing two membrane-spanning segments. The overall orientation towards the cytoplasm is consistent with the ability of ZntB to facilitate zinc efflux. 相似文献