首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Summary Yeast strain 990 carries a mutation mapping to the oli1 locus of the mitochondrial genome, the gene encoding ATPase subunit 9. DNA sequence analysis indicated a substitution of valine for alanine at residue 22 of the protein. The strain failed to grow on nonfermentable carbon sources such as glycerol at low temperature (20°C). At 28°C the strain grew on nonfermentable carbon sources and was resistant to the antibiotic oligomycin. ATPase activity in mitochondria isolated from 990 was reduced relative to the wild-type strain from which it was derived, but the residual activity was oligomycin resistant. Subunit 9 (the DCCD-binding proteolipid) from the mutant strain exhibited reduced mobility in SDS-polyacrylamide gels relative to the wild-type proteolipid. Ten revertant strains of 990 were analyzed. All restored the ability to grow on glycerol at 20°C. Mitotic segregation data showed that eight of the ten revertants were attributable to mitochondrial genetic events and two were caused by nuclear events since they appeared to be recessive nuclear suppressors. These nuclear mutations retained partial resistance to oligomycin and did not alter the electrophoretic behavior of subunit 9 or any other ATPase subunit. When mitochondrial DNA from each of the revertant strains was hybridized with an oligonucleotide probe covering the oli1 mutation, seven of the mitochondrial revertants were found to be true revertants and one a second mutation at the site of the original 990 mutation. The oli1 gene from this strain contained a substitution of glycine for valine at residue 22. The proteolipid isolated from this strain had increased electrophoretic mobility relative to the wild-type proteolipid.Abbreviations DCCD dicyclohexylcarbodiimide - SDS sodium dodecyl sulfate - PMSF phenylmethylsulfonyl fluoride - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonate - SMP submitochondrial particles - mit- mitochondrial point mutant  相似文献   

2.
U P John  P Nagley 《FEBS letters》1986,207(1):79-83
The amino acid substitutions in subunit 6 of the mitochondrial ATPase complex have been determined for 4 oligomycin resistant mutants of Saccharomyces cerevisiae. The data were obtained for each mutant by nucleotide sequence analysis of the mitochondrial oli2 gene. Amino acid substitutions conferring oligomycin resistance in subunit 6 are located in two conserved regions that are thought to form domains which span the inner mitochondrial membrane. The disposition of these amino acid substitutions is consistent with the view that these two membrane-spanning domains interact structurally and functionally with the DCCD-binding proteolipid subunit 9 in the Fo-sector.  相似文献   

3.
Summary The extranuclear mitochondrial oligomycin-resistant mutation ofAspergillus nidulans, (oliA1), was transferred asexually into four nuclear oligomycin-resistant strains of different phenotypes. In all four cases, the possession of the nuclear plus extranuclear mutation led to an increase in the in vivo level of oligomycin resistance. In two cases, the altered cytochrome spectrum and impaired growth ability determined by (oliA1) were suppressed by the nuclear mutations. In the third case, the in vitro oligomycin resistance of the double mutant ATPase was dramatically increased above that of either of the component single mutant strains, indicating a synergystic interaction between the nuclear and extranuclear gene products. In the fourth case, the double mutant became cold-sensitive.A new extranuclear mitochondrial oligomycin-resistant mutation (oliB332) is described. This mutant is phenotypically similar to, though not identical with, (oliA1) but is separable by recombination.A range of nuclear oligomycin-resistant mutants have been mapped. Despite presenting five distinctly different phenotypes, they all map at the same locus.  相似文献   

4.
Oligomycin-sensitive adenosine triphosphatase (ATPase) has been purified in large yields from yeast mitochondria by a procedure employing Sepharose 6B chromatography. The nature of the oligomycin binding site in this purified preparation has been studied by an affinity labeling technique in which oligomycin binding to the ATPase complex was followed by reduction of the complex with sodium [3H]borohydride. A major incorporation of label into protein with a molecular weight near 8000 was noted. This incorporation is dependent on the presence of oligomycin, is blocked by dicyclohexylcar-bodiimide, and is altered by mutations conferring oligomycin resistance to the ATPase. The evidence suggests that the low molecular weight proteolipid component of the ATPase complex is the site of oligomycin binding.  相似文献   

5.
A new mitochondrially translated 10000 Mr proteolipid was isolated from yeast mitochondria. This proteolipid was purified by phosphocellulose chromatography, followed by reverse phase HPLC. This proteolipid was also extracted from the oligomycin sensitive ATPase complex and purified by HPLC. Its amino acid composition is different from the Dicyclohexylcarbodiimide binding protein.  相似文献   

6.
7.
Neeraj Agarwal  Vijay K. Kalra 《BBA》1983,723(2):150-159
Interaction of N,N′-dicyclohexylcarbodiimide (DCCD) with ATPase of Mycobacterium phlei membranes results in inactivation of ATPase activity. The rate of inactivation of ATPase was pseudo-first order for the initial 30–65% inactivation over a concentration range of 5–50 μM DCCD. The second-order rate constant of the DCCD-ATPase interaction was k = 8.5·105 M?1·min?1. The correlation between the initial binding of [14C]DCCD and 100% inactivation of ATPase activity shows 1.57 nmol DCCD bound per mg membrane protein. The proteolipid subunit of the F0F1-ATPase complex in membranes of M. phlei with which DCCD covalently reacts to inhibit ATPase was isolated by labeling with [14C]DCCD. The proteolipid was purified from the membrane in free and DCCD-modified form by extraction with chloroform/methanol and subsequent chromatography on Sephadex LH-20. The polypeptide was homogeneous on SDS-acrylamide gel electrophoresis and has an apparent molecular weight of 8000. The purified proteolipid contains phosphatidylinositol (67%), phosphatidylethanolamine (18%) and cardiolipin (8%). Amino acid analysis indicates that glycine, alanine and leucine were present in elevated amounts, resulting in a polarity of 27%. Cysteine and tryptophan were lacking. Butanol-extracted proteolipid mediated the translocation of protons across the bilayer, in K+-loaded reconstituted liposomes, in response to a membrane potential difference induced by valinomycin. The proton translocation was inhibited by DCCD, as measured by the quenching of fluorescence of 9-aminoacridine. Studies show that vanadate inhibits the proton gradient driven by ATP hydrolysis in membrane vesicles of M. phlei by interacting with the proteolipid subunit sector of the F0F1-ATPase complex.  相似文献   

8.
The proteolipid fraction which is obtained from the bovine mitochondrial oligomycin sensitive ATPase complex by extraction with chloroform:methanol is resolvable into 7 components by preparative reverse phase high pressure liquid chromatography. Each of these 7 components is present together with 4 additionally resolved components in the proteolipid fraction which is obtained by extraction of submitochondrial particles with chloroform: methanol. Of the 7 components derived from the oligomycin sensitive ATPase, 4 have been identified with known protein subunits of the membrane sector of this complex, 2 are newly documented subunits of this complex, and 1 remains uncharacterized.  相似文献   

9.
The plant vacuole is acidified by a complex multimeric enzyme, the vacuole-type H+-ATPase (V-ATPase). The initial association of ATPase subunits on membranes was studied using an in vitro assembly assay. The V-ATPase assembled onto microsomes when V-ATPase subunits were supplied. However, when the A or B subunit or the proteolipid were supplied individually, only the proteolipid associated with membranes. By using poly(A+) RNA depleted in the B subunit and proteolipid subunit mRNA, we demonstrated A subunit association with membranes at substoichiometric amounts of the B subunit or the 16-kD proteolipid. These data suggest that poly(A+) RNA-encoded proteins are required to catalyze the A subunit membrane assembly. Initial events were further studied by in vivo protein labeling. Consistent with a temporal ordering of V-ATPase assembly, membranes contained only the A subunit at early times; at later times both the A and B subunits were found on the membranes. A large-mass ATPase complex was not efficiently formed in the absence of membranes. Together, these data support a model whereby the A subunit is first assembled onto the membrane, followed by the B subunit.  相似文献   

10.
A single mutation in the oli2 region of the mitochondrial DNA causes a charge alteration in a mitochondrially translated subunit of the mitochondrial ATPase (subunit 6; apparent Mr 20 000; apparent pI 6.9 and 7.1). This alteration leads to the defective assembly of the proteolipid subunit into the enzyme complex. The mutant, which is able to grow only very slowly by oxidative metabolism at 28°C offers new possibilities for studying the assembly of the membrane sector (F0) into the mitochondrial ATPase complex and the role of subunit 6 in this process.  相似文献   

11.
M Guerin  C Napias 《Biochemistry》1978,17(13):2510-2516
It is possible to obtain from yeast mitochondria a proteolipid able to bind phosphate, by two different procedures. One of them, generally used for lipid extraction, leads to the preparation of a more active crude proteolipid. This crude proteolipid has been purified by various chromatographic procedures and the active fraction, in phosphate binding, is always associated with cardiolipin. Its molecular weight seems to be close to 10000. The phosphate binding shows ligand saturation behavior and is inhibited by arsenate and N-ethylmaleimide; succinate is noninhibitory. This protein seems to be dependent on the mitoribosomal synthesis since it is not present in mitochrondria of mutant "petite colonie" and its amount largely decreases in mitochondria from yeast grown in the presence of chloramphenicol. It is possible to extract a proteolipid from the oligomycin sensitive ATPase, showing the same activity and properties. The hypothesis that this proteolipid acts as a part of the Pi carrier and constitutes the oligomycin-sensitive ATPase complex is discussed.  相似文献   

12.
Three F0 subunits and the F1 subunit beta of the ATP synthase from Neurospora crassa were labeled with the lipophilic photoactivatable reagent 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine ([125I]TID). In the proteolipid subunit which was the most heavily labeled polypeptide labeling was confined to five residues at the NH2-terminus and five residues at the C-terminus of the protein. Labeling occurred at similar positions compared with the homologous protein (subunit c) in the ATP synthase from Escherichia coli, indicating a similar structure of the proteolipid subunits in their respective organisms. The inhibitors oligomycin and dicyclohexylcarbodiimide did not change the pattern of accessible surface residues in the proteolipid, suggesting that neither inhibitor induces gross conformational changes. However, in the presence of oligomycin, the extent of labeling in some residues was reduced. Apparently, these residues provide part of the binding site for the inhibitor. After reaction with dicyclohexylcarbodiimide an additional labeled amino acid was found at position 65 corresponding to the invariant carbodiimide-binding glutamic acid. These results and previous observations indicate that the carboxyl side chain of Glu-65 is located at the protein-lipid interphase. The idea is discussed that proton translocation occurs at the interphase between different types if F0 subunits. Dicyclohexylcarbodiimide or oligomycin might disturb this essential interaction between the F0 subunits.  相似文献   

13.
Waring RB  Scazzocchio C 《Genetics》1983,103(3):409-428
Four-point mitochondrial crosses were conducted in heterokaryons of Aspergillus nidulans. The mutations used were (oliA1), conferring resistance to oligomycin, (camA112), conferring resistance to chloramphenicol; (cs-67), conferring cold-sensitivity, and ( sumD16), a suppressor of (cs-67). Initially, the crosses were conducted by observing the segregation of extranuclear markers in heterokaryotic sectors emerging from the original point of heterokaryosis. This showed that (camA112), (cs-67) and (sumD16) were linked but were probably all unlinked to (oliA1). Second, four-point crosses were conducted using a double marker selection technique, in which (camA112 ) and (oliA1) were always set in repulsion and the frequency of the phenotypes produced by the segregation of the mutant and wild-type alleles of (cs-67) and (sumD) were observed in (camA112 oliA1) recombinants. From these results we concluded that (camA112 ), (cs-67) and (sumD16) were linked and probably mapped in the order given. It was observed that the two nuclear types of conidia from a heterokaryon often had a dissimilar frequency distribution of the segregants of a mitochondrial cross.  相似文献   

14.
A membrane fraction enriched with magnesium-dependent ATPase activity was isolated from sugarbeet (Beta vulgaris L.) taproot by a combination of differential centrifugation, extraction with KI and sucrose density gradient centrifugation. This activity was inhibited by vanadate, N,N′-dicyclohexylcarbodiimide and diethylstilbestrol, but was insensitive to molybdate, azide, oligomycin, ouabain, and nitrate, suggesting enrichment in plasma membrane ATPase. The enzyme was substrate specific for ATP, had a pH optimum of 7.0, but showed little stimulation by 50 mM KCl. The sugarbeet ATPase preparation contained endogenous protein kinase activity which could be reduced by extraction of the membranes with 0.1% (w/v) sodium deoxycholate. Reduction of protein kinase activity allowed the demonstration of a rapidly turning over phosphorylated intermediate on a Mr 105000 polypeptide, most likely representing the catalytic subunit of the ATPase. Phosphorylation was magnesium dependent, sensitive to diethylstilbestrol and vanadate but insensitive to oligomycin and azide. Neither the ATPase activity nor phosphoenzyme level were affected by combinations of sodium and potassium in the assay. These results argue against the presence of a synergistically stimulated NaK-ATPase at the plasma membrane of sugarbeet.  相似文献   

15.
A cytochemical study has been made on the localization of ATPase activity in corn (Zea mays L.) roots. Light microscopy shows washing for 4 hours to increase the general ATPase activity in the peripheral layers of the root cortex; oligomycin and N,N-dicyclohexylcarbodiimide inhibit this activity, oligomycin being more effective. Ultrastructural studies of ATPase location show oligomycin treatment to inhibit both mitochondrial and plasmalemma ATPase, but only in the epidermis and outer cortex. Studies with lipid-soluble dyes indicate that oligomycin might not penetrate very deeply into root tissue in the time span of these experiments. It is suggested that the strong inhibition of ion absorption by oligomycin without a corresponding decline in ATP content is probably due to inhibition of ion absorption in the peripheral cell layers, thus limiting the supply of ion for symplastic transport to the uninhibited tissues.  相似文献   

16.
Interaction of N,N'-dicyclohexylcarbodiimide (DCCD) with ATPase of Mycobacterium phlei membranes results in inactivation of ATPase activity. The rate of inactivation of ATPase was pseudo-first order for the initial 30-65% inactivation over a concentration range of 5-50 microM DCCD. The second-order rate constant of the DCCD-ATPase interaction was k = 8.5 X 10(5) M-1 X min(-1). The correlation between the initial binding of [14C]DCCD and 100% inactivation of ATPase activity shows 1.57 nmol DCCD bound per mg membrane protein. The proteolipid subunit of the F0F1-ATPase complex in membranes of M. phlei with which DCCD covalently reacts to inhibit ATPase was isolated by labeling with [14C]DCCD. The proteolipid was purified from the membrane in free and DCCD-modified form by extraction with chloroform/methanol and subsequent chromatography on Sephadex LH-20. The polypeptide was homogeneous on SDS-acrylamide gel electrophoresis and has an apparent molecular weight of 8000. The purified proteolipid contains phosphatidylinositol (67%), phosphatidylethanolamine (18%) and cardiolipin (8%). Amino acid analysis indicates that glycine, alanine and leucine were present in elevated amounts, resulting in a polarity of 27%. Cysteine and tryptophan were lacking. Butanol-extracted proteolipid mediated the translocation of protons across the bilayer, in K+-loaded reconstituted liposomes, in response to a membrane potential difference induced by valinomycin. The proton translocation was inhibited by DCCD, as measured by the quenching of fluorescence of 9-aminoacridine. Studies show that vanadate inhibits the proton gradient driven by ATP hydrolysis in membrane vesicles of M. phlei by interacting with the proteolipid subunit sector of the F0F1-ATPase complex.  相似文献   

17.
Monovalent ion stimulated adenosine triphosphatase from oat roots   总被引:19,自引:16,他引:3       下载免费PDF全文
Fisher J  Hodges TK 《Plant physiology》1969,44(3):385-393,395
Monovalent ion stimulated ATPase activity from oat (Avena sativa) roots has been found to be associated with various membrane fractions (cell wall, mitochondrial and microsomal) of oat roots. The ATPase requires Mg2+ (or Mn+2) but is further stimulated by K+ and other monovalent ions. The monovalent ions are ineffective in the absence of the divalent activating cation. The ATPase has been described with respect to monovalent ion specificity, temperature, pH, substrate specificity, and Mg2+ and K+ concentrations. It was further shown that oligomycin inhibits a part of the total ATPase activity and on the basis of the oligomycin sensitivity it appears that at least 2 membrane associated ATPases are being measured. The mitochondrial fraction is most sensitive to oligomycin and the microsomal fraction is least sensitive to oligomycin. The oligomycin insensitive ATPase appears to be stimulated more by K+ than the oligomycin sensitive ATPase.  相似文献   

18.
It is shown that the incomplete, uncompetitive inhibition pattern exhibited by oligomycin toward Na,K,ATPase cannot be explained by a single-cycle enzyme model. In contrast, the experimental data are easily explained in terms of a dimeric enzyme, only one subunit of which can bind oligomycin at a time, and that subunit is then rendered inactive. In a brief analysis of the model thus obtained by way of numerical examples it is shown that it may show activation at small concentrations of moderator, which disappears at higher concentrations, a property observed for the hydrolysis ofp-nitro-phenylphosphate, which is also catalyzed by Na,K,ATPase.  相似文献   

19.
On the subunit structure of oligomycin sensitive ATPase   总被引:1,自引:0,他引:1  
The subunit structure of oligomycin sensitive ATPase has been determined. In addition to the components of F1, and the so-called oligomycin sensitivity conferring protein, there are four other polypeptides of molecular weights 55,000, 29,000, 20,000 and 10,000 which together form the intrinsic membrane portion of the enzymic complex.  相似文献   

20.
Mitochondrial ATPase complex has been spin-labeled in the membrane using the inhibitor N-(2,2,6,6-tetramethylpeperidyl-1-OXYL)-N(cyclohexyl)carbodiimide (nccd). the amount of NCCD bound to mitochondrial fragments is 0.5 nmol/mg and cannot be dialyzed or extracted with ether, chloroform, or methanol. The electron paramagnetic resonance spectrum of NCCD bound to fragments is pH-sensitive, a greater label immobilization occurring at pH values lower or higher than 7. Ether extraction removes the ATPase inhibition by NCCD without detaching the label. This effect appears to be the consequence of the dislocation of some components of the ATPase complex. Removal of F1 natural inhibitor or of F1 does not affect the spectrum of NCCD bound to fragments, while the removal of oligomycin sensitivity-conferring protein produces an increase in the extreme splitting. Oligomycin sensitivity-conferring protein may thus interact with the NCCD binding component of the membrane. The isolation of the NCCD-binding proteolipid results in a large increase in the mobility of the label, but addition of dipalmitoyllecithin decreases the mobility of the label to the original level. Phospholipids are thus necessary to keep the NCCD-binding proteolipid in the native conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号