首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Previously, we employed a proteomics-based 2-D gel electrophoresis assay to show that exposure to 10μM benzo(a)pyrene (BaP) during a 24 h frame can lead to changes in nuclear protein expression and alternative splicing. To further expand our knowledge about the DNA damage response (DDR) induced by BaP, we investigated the nuclear protein expression profiles in HeLa cells treated with different concentrations of BaP (0.1, 1, and 10μM) using this proteomics-based 2-D gel electrophoresis assay. We found 125 differentially expressed proteins in BaP-treated cells compared to control cells. Among them, 79 (63.2%) were down-regulated, 46 (36.8%) were up-regulated; 8 showed changes in the 1μM and 10μM BaP-treated groups, 2 in the 0.1μM and 10μM BaP-treated groups, 4 in the 0.1μM and 1μM BaP-treated groups, and only one showed changes in all three groups. Fifty protein spots were chosen for liquid chromatography-tandem mass spectrometry (LC-MS/MS) identification, and of these, 39 were identified, including subunits of the 26S proteasome and Annexin A1. The functions of some identified proteins were further examined and the results showed that they might be involved in BaP-induced DDR. Taken together, these data indicate that proteomics is a valuable approach in the study of environmental chemical-host interactions, and the identified proteins could provide new leads for better understanding BaP-induced mutagenesis and carcinogenesis.  相似文献   

2.
Summary All radiation-induced aberrations in dry seeds of Crepis capillaris are chromosome rearrangements. The main types of chromosome rearrangements in the above tests were asymmetrical and symmetrical exchanges, ring chromosomes and ring deletions. The majority of ring chromosomes is of a chromosomes type which brings about paired rings. Fig. 1 presents the mechanism of the production of the paired rings. In a number of cases the structure of rings proved to be quite unexpected. Among middle size rings single rings proved to occur in 18.8%, among microrings-1.9% cases. Somewhat fewer are presented by pairs of rings one inside the other. The large rings present complex figures made by tangled chromatids. Two rings make one due to mitotic crossing-over between sister-chromatids (Fig. 5). Double crossing-over would lead to the exchange of part of material between two independent rings or to one ring being thrust into the other due to different strand positions in two points of the exchange. Large rings is the provision of complicated exchanges.  相似文献   

3.
4.
We have previously reported the use of six- and seven-color paint sets in the analysis of canine soft tissue sarcomas. Here we combine this technique with flow sorting of translocation chromosomes, reverse painting, and polymerase chain reaction (PCR) analysis of the gene content of the reverse paint in order to provide a more detailed analysis of cytogenetic abnormalities in canine tumors. We examine two fibrosarcomas, both from female Labrador retrievers, and show abnormalities in chromosomes 11 and 30 in both cases. Evidence of involvement of TGFBR1 is presented for one tumor.  相似文献   

5.
Chromosome rearrangements in Trypanosoma brucei   总被引:39,自引:0,他引:39  
  相似文献   

6.
Recent studies have shown that the genome of Giardia lamblia is plastic. Clinical isolates exhibit extensive karyotypic heterogeneity and chromosome rearrangements occur frequently, in vitro. In this review, Sylvie Le Blancq looks at genome organization and the impact of DNA rearrangement events.  相似文献   

7.
Checkpoint kinase 2 (CHK2) is a downstream effector of the DNA damage response (DDR). Dysfunctional telomeres, either owing to critical shortening or disruption of the shelterin complex, activate a DDR, which eventually results in cell cycle arrest, senescence and/or apoptosis. Successive generations of telomerase‐deficient (Terc) mice show accelerated aging and shorter lifespan due to tissue atrophy and impaired organ regeneration associated to progressive telomere shortening. In contrast, mice deficient for the shelterin component TRF1 in stratified epithelia show a rapid and massive induction of DDR, leading to perinatal lethality and severe skin defects. In both mouse models, p53 deficiency can rescue survival. Here, we set to address the role of CHK2 in signaling telomere dysfunction in both mouse models. To this end, we generated mice doubly deficient for Chk2 and either Terc (Chk2?/? Terc?/?) or Trf1 (Trf1Δ/Δ K5Cre Chk2?/?). We show that Chk2 deletion improves Terc‐associated phenotypes, including lifespan and age‐associated pathologies. Similarly, Chk2 deficiency partially rescues perinatal mortality and attenuates degenerative pathologies of Trf1Δ/Δ K5Cre mice. In both cases, we show that the effects are mediated by a significant attenuation of p53/p21 signaling pathway. Our results represent the first demonstration of a role for CHK2 in the in vivo signaling of dysfunctional telomeres.  相似文献   

8.
Adult male mice were given a range of neutron doses at 80 +/- 20 mrad/h from a plutonium-beryllium source. Cytogenetic analysis indicated that chronic spermatogonial exposure to a mean total dose of 10, 30, 52, 98 or 150 rad produced translocations, sampled in spermatocytes four months later, amounting to 0.32, 0.99. 1.69, 1.91 and 1.65%, respectively. The dose response for the 0-52 rad range was linear. For higher doses, a better fit to the data was an expression with dose exponent above unity.  相似文献   

9.
In normal human somatic cells, telomere dysfunction causes cellular senescence, a stable proliferative arrest with tumour suppressing properties. Whether telomere dysfunction-induced senescence (TDIS) suppresses cancer growth in humans, however, is unknown. Here, we demonstrate that multiple and distinct human cancer precursor lesions, but not corresponding malignant cancers, are comprised of cells that display hallmarks of TDIS. Furthermore, we demonstrate that oncogenic signalling, frequently associated with initiating cancer growth in humans, dramatically affected telomere structure and function by causing telomeric replication stress, rapid and stochastic telomere attrition, and consequently telomere dysfunction in cells that lack hTERT activity. DNA replication stress induced by drugs also resulted in telomere dysfunction and cellular senescence in normal human cells, demonstrating that telomeric repeats indeed are hypersensitive to DNA replication stress. Our data reveal that TDIS, accelerated by oncogene-induced DNA replication stress, is a biological response of cells in human cancer precursor lesions and provide strong evidence that TDIS is a critical tumour suppressing mechanism in humans.  相似文献   

10.
11.
Chromosome 11 abnormalities in leukemic bone marrow cells were observed in 14.0% of the cases of acute lymphoblastic leukemia (ALL), in 18.7% of acute myeloid leukemia (AML) cases, and in 16.7% of refractory anemia (RA) cases. Bands 11pl3, 11pl4, 11pl5 on the short arm and 11ql4, 11q21, 11q23 on the long arm of chromosome 11 were involved in these rearrangements. Rearrangements of band 11q23 were detected most often. Reciprocal translocations were found with the highest frequency, while para-and pericentic inversions and deletions, both terminal and interstitial, occurred less often. In RA cases only deletions were observed. Comparison of clinical features showed no correlation with age and major hematological indexes such as the number of blast cells in the initial period. These results show that the prognosis is poor in cases of abnormalities at both 11q21 and 11q23 in acute leukemia (AL) as well as in 11pl3 and 11pl5 in AML. This is the first observation of these phenomena.  相似文献   

12.
The cases of chromosome 11 abnormalities in leukemic bone marrow cells have constituted 14.0% in acute lymphoblastic leukemia (ALL), 18.7% in acute myeloid leukemia (AML), and 16.7% in refractory anemia (RA). The bands of the short arms 11p13, 11p14, llp15 and the long arms 11q14, 11q21, 11q23 were involved in chromosome rearrangements. The rearrangements of the band 11q23 were detected more often. Reciprocal translocations were found with the highest frequency, while para- and pericentic invertions, terminal and intestitial deletions occured with the lower incidence. Deletions were found in RA cases only. Comparison with the clinical features showed no correlation with the age and the main haematological indexes including the amount of blast cells in the initial period. The results have showed the poor prognosis of the abnormalities not only of 11q21, 11q23 in acute leukemia (AL), but of 11p13, 11p15 in AML as well, while not enough data on this subject is availalbe in the literature.  相似文献   

13.
Comment on: Brault ME, et al. Mol Biol Cell 2011; 22:179-88.  相似文献   

14.
15.
Chromosomal instability (CIN) has been recognized as a hallmark of human cancer and is caused by continuous chromosome missegregation during mitosis. Proper chromosome segregation requires a physical connection between spindle microtubules and centromeric DNA and this attachment occurs at proteinaceous structures called kinetochore. Thus, defect in kinetochore function is a candidate source for CIN and the generation of aneuploidy. Recently, a number of kinetochore components have been shown to be mutated and/or aberrantly expressed in human cancers, which suggests an important role of kinetochore for CIN and carcinogenesis. In this article, we will discuss about how kinetochore dysfunction causes CIN and might lead to the development of cancer.  相似文献   

16.
Role of telomere in endothelial dysfunction in atherosclerosis   总被引:3,自引:0,他引:3  
PURPOSE OF REVIEW: Telomeres consist of repeats of G-rich sequence at the end of chromosomes. These DNA repeats are synthesized by enzymatic activity associated with an RNA protein complex called telomerase. In most somatic cells, telomerase activity is insufficient, and telomere length decreases with increasing cell division, resulting in an irreversible cell growth arrest, termed cellular senescence. Cellular senescence is associated with an array of phenotypic changes suggestive of aging. Until recently, cellular senescence has largely been studied as an in-vitro phenomenon; however, there is accumulating evidence that indicates a critical role of telomere function in the pathogenesis of human atherosclerosis. This review attempts to summarize recent work in vascular biology that supports the "telomere hypothesis". We discuss the possible relevance of telomere function to vascular aging and the therapeutic potential of telomere manipulation. RECENT FINDINGS: It has been reported that many of the changes in senescent vascular cell behavior are consistent with known changes seen in age-related vascular diseases. Introduction of telomere malfunction has been shown to lead to endothelial dysfunction that promotes atherogenesis, whereas telomere lengthening extends cell lifespan and protects against endothelial dysfunction associated with senescence. Indeed, recent studies have demonstrated that telomere attrition and cellular senescence occur in the blood vessels and are associated with human atherosclerosis. SUMMARY: Recent findings suggest that vascular cell senescence induced by telomere shortening may contribute to atherogenesis and may provide insights into a novel treatment of antisenescence to prevent atherosclerosis.  相似文献   

17.
Telomeres consist of repetitive DNA and associated proteins that protect chromosome ends from illicit DNA repair. It is well known that telomeric DNA is progressively eroded during cell division, until telomeres become too short and the cell stops dividing. There is a second mode of telomere shortening, however, which is a regulated form of telomere rapid deletion (TRD) termed telomere trimming that is reviewed here. Telomere trimming appears to involve resolution of recombination intermediate structures, which shortens the telomere by release of extrachromosomal telomeric DNA. This has been detected in human and in mouse cells and occurs both in somatic and germline cells, where it sets an upper limit on telomere length and contributes to a length equilibrium set-point in cells that have a telomere elongation mechanism. Telomere trimming thus represents an additional mechanism of telomere length control that contributes to normal telomere dynamics and cell proliferative potential.  相似文献   

18.
Approximately two of every five people will develop cancer in their lifetime. Dietary modifications are one of the most promising lifestyle changes that can adjust the risk of developing cancer by nearly 40%. Carotenoids are a diverse group of natural pigments and are present in many fruits and vegetables. The data surrounding carotenoids and their potential roles in carcinogenesis have been rapidly growing over the past two decades. This review summarizes the literature surrounding the associations between the most six common carotenoids in the diet and ten of the most commonly diagnosed cancers. In this study, preclinical, epidemiological, and toxicology data were reviewed. Data from these studies suggest that several carotenoids might provide a beneficial impact on reducing carcinogenesis. Further studies are needed to determine the causal relationships between individual carotenoids and cancer incidence and progression. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.  相似文献   

19.
20.
Eukaryotes appear to evolve by micro and macro rearrangements. This is observed not only for long-term evolutionary adaptation, but also in short-term experimental evolution of yeast, Saccharomyces cerevisiae. Moreover, based on these and other experiments it has been postulated that repeat elements, retroposons for example, mediate such events. We study an evolutionary model in which genomes with retroposons and a breaking/repair mechanism are subjected to a changing environment. We show that retroposon-mediated rearrangements can be a beneficial mutational operator for short-term adaptations to a new environment. But simply having the ability of rearranging chromosomes does not imply an advantage over genomes in which only single-gene insertions and deletions occur. Instead, a structuring of the genome is needed: genes that need to be amplified (or deleted) in a new environment have to cluster. We show that genomes hosting retroposons, starting with a random order of genes, will in the long run become organized, which enables (fast) rearrangement-based adaptations to the environment. In other words, our model provides a "proof of principle" that genomes can structure themselves in order to increase the beneficial effect of chromosome rearrangements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号