首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Smooth muscle cells isolated from the secondary and tertiary branches of the rabbit mesenteric artery contain large Ca2+-dependent channels. In excised patches with symmetrical (140 mm) K+ solutions, these channels had an average slope conductance of 235 ± 3 pS, and reversed in direction at −6.1 ± 0.4 mV. The channel showed K+ selectivity and its open probability (P o ) was voltage-dependent. Iberiotoxin (50 nm) reversibly decreased P o , whereas tetraethylammonium (TEA, at 1 mm) reduced the unitary current amplitude. Apamin (200 nm) had no effect. The channel displayed sublevels around 1/3 and 1/2 of the mainstate level. The effect of [Ca2+] on P o was studied and data fitted to Boltzmann relationships. In 0.1, 0.3, 1.0 and 10 μm Ca2+, V 1/2 was 77.1 ± 5.3 (n= 18), 71.2 ± 4.8 (n= 16), 47.3 ± 10.1 (n= 11) and −14.9 ± 10.1 mV (n= 6), respectively. Values of k obtained in 1 and 10 μm [Ca2+] were significantly larger than that observed in 0.1 μm [Ca2+]. With 30 μm NS 1619 (a BKCa channel activator), V 1/2 values were shifted by 39 mV to the left (hyperpolarizing direction) and k values were not affected. TEA applied intracellularly, reduced the unitary current amplitude with a K d of 59 mm. In summary, BKCa channels show a particularly weak sensitivity to intracellular TEA and they also display large variation in V 1/2 and k. These findings suggest the possibility that different types (isoforms) of BKCa channels may exist in this vascular tissue. Received: 22 December 1997/Revised: 27 March 1998  相似文献   

2.
The Ca2+-activated maxi K+ channel was found in the apical membrane of everted rabbit connecting tubule (CNT) with a patch-clamp technique. The mean number of open channels (NP o ) was markedly increased from 0.007 ± 0.004 to 0.189 ± 0.039 (n= 7) by stretching the patch membrane in a cell-attached configuration. This activation was suggested to be coupled with the stretch-activation of Ca2+-permeable cation channels, because the maxi K+ channel was not stretch-activated in both the cell-attached configuration using Ca2+-free pipette and in the inside-out one in the presence of 10 mm EGTA in the cytoplasmic side. The maxi K+ channel was completely blocked by extracellular 1 μm charybdotoxin (CTX), but was not by cytoplasmic 33 μm arachidonic acid (AA). On the other hand, the low-conductance K+ channel, which was also found in the same membrane, was completely inhibited by 11 μm AA, but not by 1 μm CTX. The apical K+ conductance in the CNT was estimated by the deflection of transepithelial voltage (ΔV t ) when luminal K+ concentration was increased from 5 to 15 mEq. When the tubule was perfused with hydraulic pressure of 0.5 KPa, the ΔV t was only −0.7 ± 0.4 mV. However, an increase in luminal fluid flow by increasing perfusion pressure to 1.5 KPa markedly enhanced ΔV t to −9.4 ± 0.9 mV. Luminal application of 1 μm CTX reduced the ΔV t to −1.3 ± 0.6 mV significantly in 6 tubules, whereas no significant change of ΔV t was recorded by applying 33 μm AA into the lumen of 5 tubules (ΔV t =−7.2 ± 0.5 mV in control vs.ΔV t =−6.7 ± 0.6 mV in AA). These results suggest that the Ca2+-activated maxi K+ channel is responsible for flow-dependent K+ secretion by coupling with the stretch-activated Ca2+-permeable cation channel in the rabbit CNT. Received: 21 August 1997/Revised: 20 March 1998  相似文献   

3.
These experiments were conducted to determine the membrane K+ currents and channels in human urinary bladder (HTB-9) carcinoma cells in vitro. K+ currents and channel activity were assessed by the whole-cell voltage clamp and by either inside-out or outside-out patch clamp recordings. Cell depolarization resulted in activation of a Ca2+-dependent outward K+ current, 0.57 ± 0.13 nS/pF at −70 mV holding potential and 3.10 ± 0.15 nS/pF at 30 mV holding potential. Corresponding patch clamp measurements demonstrated a Ca2+-activated, voltage-dependent K+ channel (KCa) of 214 ± 3.0 pS. Scorpion venom peptides, charybdotoxin (ChTx) and iberiotoxin (IbTx), inhibited both the activated current and the KCa activity. In addition, on-cell patch recordings demonstrated an inwardly rectifying K+ channel, 21 ± 1 pS at positive transmembrane potential (V m ) and 145 ± 13 pS at negative V m . Glibenclamide (50 μm), Ba2+ (1 mm) and quinine (100 μm) each inhibited the corresponding nonactivated, basal whole-cell current. Moreover, glibenclamide inhibited K+ channels in inside/out patches in a dose-dependent manner, and the IC50= 46 μm. The identity of this K+ channel with an ATP-sensitive K+ channel (KATP) was confirmed by its inhibition with ATP (2 mm) and by its activation with diazoxide (100 μm). We conclude that plasma membranes of HTB-9 cells contain the KCa and a lower conductance K+ channel with properties consistent with a sulfonylurea receptor-linked KATP. Received: 12 June 1997/Revised: 21 October 1997  相似文献   

4.
Large Conductance Ca2+-Activated K+ Channels in Human Meningioma Cells   总被引:2,自引:0,他引:2  
Cells from ten human meningiomas were electrophysiologically characterized in both living tissue slices and primary cultures. In whole cells, depolarization to voltages higher than +80 mV evoked a large K+ outward current, which could be blocked by iberiotoxin (100 nm) and TEA (half blocking concentration IC50= 5.3 mm). Raising the internal Ca2+ from 10 nm to 2 mm shifted the voltage of half-maximum activation (V 1/2) of the K+ current from +106 to +4 mV. Respective inside-out patch recordings showed a voltage- and Ca2+-activated (BK Ca ) K+ channel with a conductance of 296 pS (130 mm K+ at both sides of the patch). V 1/2 of single-channel currents was +6, −12, −46, and −68 mV in the presence of 1, 10, 100, and 1000 μm Ca2+, respectively, at the internal face of the patch. In cell-attached patches the open probability (P o ) of BK Ca channels was nearly zero at potentials below +80 mV, matching the activation threshold for whole-cell K+ currents with 10 nm Ca2+ in the pipette. Application of 20 μm cytochalasin D increased P o of BK Ca channels in cell-attached patches within minutes. These data suggest that the activation of BK Ca channels in meningioma cells does not only depend on voltage and internal Ca2+ but is also controlled by the cytoskeleton. Received 18 June 1999/Revised: 18 January 2000  相似文献   

5.
The effects of thyroid status on the properties of ATP-sensitive potassium channels were investigated. Single-channel recordings were made using excised inside-out membrane patches from enzymatically dissociated ventricular myocytes from hearts of control and thyroidectomized rats and each group was studied with and without administration of thyroid hormone. In patches excised from hypothyroid myocytes the IC50 for ATP inhibition of KATP channels was 110 μm. This value was 3-fold higher than the IC50 in control myocytes (43 μm). Treatment of hypothyroid rats to restore physiological levels of thyroid hormone (tri-iodothyronine, T3), resulted in a return to normal ATP-sensitivity (IC50= 46 μm). In patches from animals rendered hyperthyroid, the IC50 for ATP was 50 μm and this value was not significantly different from the control. There was no difference in the cooperativity of ATP-binding (Hill coefficient, nH) among control (nH= 2.2), hypothyroid (nH= 2.1), T3-treated (nH= 2.0) and hyperthyroid groups (nH= 2.4). The unitary conductance was unchanged and there was no apparent change in intraburst kinetics between examples of single KATP channels from control and hypothyroid rats. Action potentials recorded in myocytes from hypothyroid rats were significantly shortened by 50 μm levcromakalim, a KATP channel opener (P < 0.001) but unchanged in control myocytes. We conclude that hypothyroidism significantly decreased the ATP-sensitivity of KATP channels, whereas the induction of hyperthyroid conditions did not alter the ATP-sensitivity of these channels. Thus, hypothyroidism is likely to have important physiological consequences under circumstances in which KATP channels are activated, such as during ischemia. Received: 1 July 1997/Revised: 24 December 1997  相似文献   

6.
We have previously reported the presence of two Ca2+ influx components with relatively high (KCa= 152 ± 79 μm) and low (KCa= 2.4 ± 0.9 mm) affinities for Ca2+ in internal Ca2+ pool-depleted rat parotid acinar cells [Chauthaiwale et al. (1996) Pfluegers Arch. 432:105–111]. We have also reported the presence of a high affinity Ca2+ influx component with KCa= 279 ± 43 μm in rat parotid gland basolateral plasma membrane vesicles (BLMV). [Lockwich, Kim & Ambudkar (1994) J. Membrane Biol. 141:289–296]. The present studies show that a low affinity Ca2+ influx component is also present in BLMV with KCa= 2.3 ± 0.41 mm (Vmax= 16.36 ± 4.11 nmoles of Ca2+/mg protein/min). Our data demonstrate that this low affinity component is similar to the low affinity Ca2+ influx component that is activated by internal Ca2+ store depletion in dispersed parotid gland acini by the following criteria: (i) similar KCa for calcium flux, (ii) similar IC50 for inhibition by Ni2+ and Zn2+; (iii) increase in KCa at high external K+, (iv) similar effects of external pH. The high affinity Ca2+ influx in cells is different from the low affinity Ca2+ influx component cells in its sensitivity to pH, KCl, Zn2+ and Ni2+. The low and high affinity Ca2+ influx components in BLMV can also be distinguished from each other based on the effects of Zn2+, Ni2+, KCl, and dicyclohexylcarbodiimide. In aggregate, these data demonstrate the presence of a low affinity passive Ca2+ influx pathway in BLMV which displays characteristics similar to the low affinity Ca2+ influx component detected in parotid acinar cells following internal Ca2+ store depletion. Received: 19 March 1997/Revised: 25 November 1997  相似文献   

7.
Properties of large conductance Ca2+-activated K+ channels were studied in the soma of motoneurones visually identified in thin slices of neonatal rat spinal cord. The channels had a conductance of 82 ± 5 pS in external Ringer solution (5.6 mm K+ o //155 mm K+ i ) and 231 ± 4 pS in external high-K o solution (155 mm K+ o //155 mm K+ i ). The channels were activated by depolarization and by an increase in internal Ca2+ concentration. Potentials of half-maximum channel activation (E50) were −13, −34, −64 and −85 mV in the presence of 10−6, 10−5, 10−4 and 10−3 m internal Ca2+, respectively. Using an internal solution containing 10−4 m Ca2+, averaged KCa currents showed fast activation within 2–3 msec after a voltage step to +50 mV. Averaged KCa currents did not inactivate during 400 msec voltage pulses. External TEA reduced the apparent single-channel amplitude with a 50% blocking concentration (IC50) of 0.17 ± 0.02 mm. KCa channels were completely suppressed by externally applied 100 mm charybdotoxin. It is concluded that KCa channels activated by Ca2+ entry during the action potential play an important role in the excitability of motoneurones. Received: 7 November 1996/Revised: 29 October 1997  相似文献   

8.
A voltage-activated Ca++ channel has been identified in the apical membranes of cultured rabbit proximal tubule cells using the patch-clamp technique. With 105 mm CaCl2 solution in the pipette and 180 NaAsp in the bath, the channel had a conductance of 10.4 ± 1.0 pS (n= 8) in on-cell patches, and 9.8 ± 1.1 pS (n= 8) in inside-out patches. In both on-cell and inside-out patches, the channel is active by membrane depolarization. For this channel, the permeation to Ba++ and Ca++ is highly selective over Na+ and K+ (PCa(Ba):PNa(K) >200:1). The sensitivity to dihydropyridines is similar to that for L-type channels where the channel was blocked by nifedipine (10 μm), and activated by Bay K 8644 (5 μm). When activated by Bay K 8644, the channel showed subconductance levels. Treatment with forskolin (12.5 μm), phorbol ester (1 μm), or stretching (40 cm water) did not activate this channel. These results indicate that this Ca++ channel is mostly regulated by membrane voltage, and appears to be an epithelial class of L-type Ca++ channel. As such, it may participate in calcium reabsorption during periods of enhanced sodium reabsorption, or calcium signaling in volume regulation, where membrane depolarization occurs for prolonged periods. Received: 1 April 1996/Revised: 5 August 1996  相似文献   

9.
2-Methoxyestradiol, an endogenous metabolite of 17β-estradiol, is known to have antitumor and antiangiogenic actions. The effects of 2-methoxyestradiol on ionic currents were investigated in an endothelial cell line (HUV-EC-C) originally derived from human umbilical vein. In the whole-cell patch-clamp configuration, 2-methoxyestradiol (0.3–30 μm) reversibly suppressed the amplitude of K+ outward currents. The IC 50 value of the 2-methoxyestradiol-induced decrease in outward current was 3 μm. Evans blue (30 μm) or niflumic acid (30 μm), but not diazoxide (30 μm), reversed the 2-methoxyestradiol-induced decrease in outward current. In the inside-out configuration, application of 2-methoxyestradiol (3 μm) to the bath did not modify the single-channel conductance of large-conductance Ca2+-activated K+ (BKCa) channels; however, it did suppress the channel activity. 2-Methoxyestradiol (3 μm) produced a shift in the activation curve of BKCa channels to more positive potentials. Kinetic studies showed that the 2-methoxyestradiol-induced inhibition of BKCa channels is primarily mediated by a decrease in the number of long-lived openings. 2-Methoxyestradiol-induced inhibition of the channel activity was potentiated by membrane stretch. In contrast, neither 17β-estradiol (10 μm) nor estriol (10 μm) affected BKCa channel activity, whereas 2-hydroxyestradiol (10 μm) slightly suppressed it. Under current-clamp condition, 2-methoxyestradiol (10 μm) caused membrane depolarization and Evans blue (30 μm) reversed 2-methoxyestradiol-induced depolarization. The present study provides evidence that 2-methoxyestradiol can suppress the activity of BKCa channels in endothelial cells. These effects of 2-methoxyestradiol on ionic currents may contribute to its effects on functional activity of endothelial cells. Received: 27 November 2000/Revised: 13 April 2001  相似文献   

10.
We analyzed [Ca2+] i transients in Paramecium cells in response to veratridine for which we had previously established an agonist effect for trichocyst exocytosis (Erxleben & Plattner, 1994. J. Cell Biol. 127:935–945; Plattner et al., 1994. J. Membrane Biol. 158:197–208). Wild-type cells (7S), nondischarge strain nd9–28°C and trichocyst-free strain ``trichless' (tl), respectively, displayed similar, though somewhat diverging time course and plateau values of [Ca2+] i transients with moderate [Ca2+] o in the culture/assay fluid (50 μm or 1 mm). In 7S cells which are representative for a normal reaction, at [Ca2+] o = 30 nm (c.f. [Ca2+] rest i =∼50 to 100 nm), veratridine produced only a small cortical [Ca2+] i transient. This increased in size and spatial distribution at [Ca2+] o = 50 μm of 1 mm. Interestingly with unusually high yet nontoxic [Ca2+] o = 10 mm, [Ca2+] i transients were much delayed and also reduced, as is trichocyst exocytosis. We interpret our results as follows. (i) With [Ca2+] o = 30 nm, the restricted residual response observed is due to Ca2+ mobilization from subplasmalemmal stores. (ii) With moderate [Ca2+] o = 50 μm to 1 mm, the established membrane labilizing effect of veratridine may activate not only subplasmalemmal stores but also Ca2+ o influx from the medium via so far unidentified (anteriorly enriched) channels. Visibility of these phenomena is best in tl cells, where free docking sites allow for rapid Ca2+ spread, and least in 7S cells, whose perfectly assembled docking sites may ``consume' a large part of the [Ca2+] i increase. (iii) With unusually high [Ca2+] o , mobilization of cortical stores and/or Ca2+ o influx may be impeded by the known membrane stabilizing effect of Ca2+ o counteracting the labilizing/channel activating effect of veratridine. (iv) We show these effects to be reversible, and, hence, not to be toxic side-effects, as confirmed by retention of injected calcein. (v) Finally, Mn2+ entry during veratridine stimulation, documented by Fura-2 fluorescence quenching, may indicate activation of unspecific Me2+ channels by veratridine. Our data have some bearing on analysis of other cells, notably neurons, whose response to veratridine is of particular and continous interest. Received: 8 December 1998/Revised: 2 March 1999  相似文献   

11.
The pharmacological profile of a voltage-independent Ca2+-activated potassium channel of intermediate conductance (IK(Ca2+)) present in bovine aortic endothelial cells (BAEC) was investigated in a series of inside-out and outside-out patch-clamp experiments. Channel inhibition was observed in response to external application of ChTX with a half inhibition concentration of 3.3 ± 0.3 nm (n= 4). This channel was insensitive to IbTX, but channel block was detected following external application of MgTX and StK leading to the rank order toxin potency ChTX > StK > MgTX >>IbTX. A reduction of the channel unitary current amplitude was also measured in the presence of external TEA, with half reduction occurring at 23 ± 3 mm TEA (n= 3). The effect of TEA was voltage insensitive, an indication that TEA may bind to a site located on external side of the pore region of this channel. Similarly, the addition of d-TC to the external medium caused a reduction of the channel unitary current amplitude with half reduction at 4.4 ± 0.3 mm (n= 4). In contrast, application of d-TC to the bathing medium in inside-out experiments led to the appearance of long silent periods, typical of a slow blocking process. Finally, the IK(Ca2+) in BAEC was found to be inhibited by NS1619, an activator of the Ca2+-activated potassium channel of large conductance (Maxi K(Ca2+)), with a half inhibition value of 11 ± 0.8 μm (n= 4). These results provide evidence for a pharmacological profile distinct from that reported for the Maxi K(Ca2+) channel, with some features attributed to the voltage-gated KV1.2 potassium channel. Received: 6 November 1997/Revised: 19 February 1998  相似文献   

12.
The outer sulcus epithelium was recently shown to absorb cations from the lumen of the gerbil cochlea. Patch clamp recordings of excised apical membrane were made to investigate ion channels that participate in this reabsorptive flux. Three types of channel were observed: (i) a nonselective cation (NSC) channel, (ii) a BK (large conductance, maxi K or K Ca ) channel and (iii) a small K+ channel which could not be fully characterized. The NSC channel found in excised insideout patch recordings displayed a linear current-voltage (I-V) relationship (27 pS) and was equally conductive for Na+ and K+, but not permeable to Cl or N-methyl-d-glucamine. Channel activity required the presence of Ca2+ at the cytosolic face, but was detected at Ca2+ concentrations as low as 10−7 m (open probability (P o ) = 0.11 ± 0.03, n= 8). Gadolinium decreased P o of the NSC channel from both the external and cytosolic side (IC50∼ 0.6 μm). NSC currents were decreased by amiloride (10 μm− 1 mm) and flufenamic acid (0.1 mm). The BK channel was also frequently (38%) observed in excised patches. In symmetrical 150 mm KCl conditions, the I-V relationship was linear with a conductance of 268 pS. The Goldman-Hodgkin-Katz equation for current carried solely by K+ could be fitted to the I-V relationship in asymmetrical K+ and Na+ solutions. The channel was impermeable to Cl and N-methyl-d-glucamine. P o of the BK channel increased with depolarization of the membrane potential and with increasing cytosolic Ca2+. TEA (20 mm), charybdotoxin (100 nm) and Ba2+ (1 mm) but not amiloride (1 mm) reduced P o from the extracellular side. In contrast, external flufenamic acid (100 μm) increased P o and this effect was inhibited by charybdotoxin (100 nm). Flufenamic acid inhibited the inward short-circuit current measured by the vibrating probe and caused a transient outward current. We conclude that the NSC channel is Ca2+ activated, voltage-insensitive and involved in both constitutive K+ and Na+ reabsorption from endolymph while the BK channel might participate in the K+ pathway under stimulated conditions that produce an elevated intracellular Ca2+ or depolarized membrane potential. Received: 14 October 1999/Revised: 10 December 1999  相似文献   

13.
We have investigated the interaction of two peptides (ShB — net charge +3 and ShB:E12KD13K — net charge +7) derived from the NH2-terminal domain of the Shaker K+ channel with purified, ryanodine-modified, cardiac Ca2+-release channels (RyR). Both peptides produced well resolved blocking events from the cytosolic face of the channel. At a holding potential of +60 mV the relationship between the probability of block and peptide concentration was described by a single-site binding scheme with 50% saturation occurring at 5.92 ± 1.06 μm for ShB and 0.59 ± 0.14 nm for ShB:E12KD13K. The association rates of both peptides varied with concentration (4.0 ± 0.4 sec−1μm −1 for ShB and 2000 ± 200 sec−1μm −1 for ShB:E12KD13K); dissociation rates were independent of concentration. The interaction of both peptides was influenced by applied potential with the bulk of the voltage-dependence residing in Koff. The effectiveness of the inactivation peptides as blockers of RyR is enhanced by an increase in net positive charge. As is the case with inactivation and block of K+ channels, this is mediated by a large increase in Kon. These observations are consistent with the proposal that the conduction pathway of RyR contains negatively charged sites which will contribute to the ion handling properties of this channel. Received: 15 December 1997/Revised: 13 March 1998  相似文献   

14.
We evaluated mechanisms which mediate alterations in intracellular biochemical events in response to transient mechanical stimulation of colonic smooth muscle cells. Cultured myocytes from the circular muscle layer of the rabbit distal colon responded to brief focal mechanical deformation of the plasma membrane with a transient increase in intracellular calcium concentration ([Ca2+] i ) with peak of 422.7 ± 43.8 nm above an average resting [Ca2+] i of 104.8 ± 10.9 nm (n= 57) followed by both rapid and prolonged recovery phases. The peak [Ca2+] i increase was reduced by 50% in the absence of extracellular Ca2+, while the prolonged [Ca2+] i recovery was either abolished or reduced to ≤15% of control values. In contrast, no significant effect of gadolinium chloride (100 μm) or lanthanum chloride (25 μm) on either peak transient or prolonged [Ca2+] i recovery was observed. Pretreatment of cells with thapsigargin (1 μm) resulted in a 25% reduction of the mechanically induced peak [Ca2+] i response, while the phospholipase C inhibitor U-73122 had no effect on the [Ca2+] i transient peak. [Ca2+] i transients were abolished when cells previously treated with thapsigargin were mechanically stimulated in Ca2+-free solution, or when Ca2+ stores were depleted by thapsigargin in Ca2+-free solution. Pretreatment with the microfilament disrupting drug cytochalasin D (10 μm) or microinjection of myocytes with an intracellular saline resulted in complete inhibition of the transient. The effect of cytochalasin D was reversible and did not prevent the [Ca2+] i increases in response to thapsigargin. These results suggest a communication, which may be mediated by direct mechanical link via actin filaments, between the plasma membrane and an internal Ca2+ store. Received: 24 March 1997/Revised: 21 July 1997  相似文献   

15.
An amiloride-sensitive, Ca2+-activated nonselective cation (NSC) channel in the apical membrane of fetal rat alveolar epithelium plays an important role in stimulation of Na+ transport by a beta adrenergic agonist (beta agonist). We studied whether Ca2+ has an essential role in the stimulation of the NSC channel by beta agonists. In cell-attached patches formed on the epithelium, terbutaline, a beta agonist, increased the open probability (P o ) of the NSC channel to 0.62 ± 0.07 from 0.03 ± 0.01 (mean ±se; n= 8) 30 min after application of terbutaline in a solution containing 1 mm Ca2+. The P o of the terbutaline-stimulated NSC channel was diminished in the absence of extracellular Ca2+ to 0.26 ± 0.05 (n= 8). The cytosolic Ca2+ concentration ([Ca2+] c ) in the presence and absence of extracellular Ca2+ was, respectively, 100 ± 6 and 20 ± 2 nm (n= 7) 30 min after application of terbutaline. The cytosolic Cl concentration ([Cl] c ) in the presence and absence of extracellular Ca2+ was, respectively, 20 ± 1 and 40 ± 2 mm (n= 7) 30 min after application of terbutaline. The diminution of [Ca2+] c from 100 to 20 nm itself had no significant effects on the P o if the [Cl] c was reduced to 20 mm; the P o was 0.58 ± 0.10 at 100 nm [Ca2+] c and 0.55 ± 0.09 at 20 nm [Ca2+] c (n= 8) with 20 mm [Cl] c in inside-out patches. On the other hand, the P o (0.28 ± 0.10) at 20 nm [Ca2+] c with 40 mm [Cl] c was significantly lower than that (0.58 ± 0.10; P < 0.01; n= 8) at 100 nm [Ca2+] c with 20 mm [Cl] c , suggesting that reduction of [Cl] c is an important factor stimulating the NSC channel. These observations indicate that the extracellular Ca2+ plays an important role in the stimulatory action of beta agonist on the NSC channel via reduction of [Cl] c . Received: 11 August 2000/Revised: 4 December 2000  相似文献   

16.
Mucosal crude microsomes, prepared from proximal rat small intestine, exhibited significant Mg-dependent, Zn-ATPase activity; V max = 23 μmoles Pi/mg protein/hr, K m = 160 nm, and Hill Coefficient, n= 1.5. Partial purification (∼10-fold) was achieved by detergent extraction, and centrifugation through 250 mm sucrose: V max = 268 units, K m = 1 nm, and n= 6. In partially purified preparations, the assay was linear with time to 60 min, and with protein concentration to 1 μg/300 μl. Activities at pH 8 and 8.5 were higher than at pH 7.2. The ATP K m was 0.7 mm, with an optimal ATP/Mg ratio of ∼2. Ca elicited ATPase activity but did not augment the Zn-dependent activity. In partially purified preparations, the homologous salts of Co, Cd, Cu, and Mn exhibited no detectable activity. Vanadate inhibition studies yielded two component kinetics with a K i of 12 μm for the first component, and 96 μm for the second component, in partially purified preparations. Tissue distribution analyses revealed gradients of activity. In the proximal half of the small intestine, Mg/Zn activity increased progressively from crypt to villus tip. In long axis studies, this activity decreased progressively from proximal to distal small bowel. Received: 12 September 2000/Revised 6 January 2001  相似文献   

17.
Muscarinic receptor-linked G protein, G i , can directely activate the specific K+ channel (I K(ACh)) in the atrium and in pacemaker tissues in the heart. Coupling of G i to the K+ channel in the ventricle has not been well defined. G protein regulation of K+ channels in isolated human ventricular myocytes was examined using the patch-clamp technique. Bath application of 1 μm acetylcholine (ACh) reversibly shortened the action potential duration to 74.4 ± 12.1% of control (at 90% repolarization, mean ±sd, n= 8) and increased the whole-cell membrane current conductance without prior β-adrenergic stimulation in human ventricular myocytes. The ACh effect was reversed by atropine (1 μm). In excised inside-out patch configurations, application of GTPγS (100 μm) to the bath solution (internal surface) caused activation of I K(ACh) and/or the background inwardly-rectifying K+ channel (I K1) in ventricular cell membranes. I K(ACh) exhibited rapid gating behavior with a slope conductance of 44 ± 2 pS (n= 25) and a mean open lifetime of 1.8 ± 0.3 msec (n= 21). Single channel activity of GTPγS-activated I K1 demonstrated long-lasting bursts with a slope conductance of 30 ± 2 pS (n= 16) and a mean open lifetime of 36.4 ± 4.1 msec (n= 12). Unlike I K(ACh), G protein-activated I K1 did not require GTP to maintain channel activity, suggesting that these two channels may be controlled by G proteins with different underlying mechanisms. The concentration of GTP at half-maximal channel activation was 0.22 μm in I K(ACh) and 1.2 μm in I K1. Myocytes pretreated with pertussis toxin (PTX) prevented GTP from activating these channels, indicating that muscarinic receptor-linked PTX-sensitive G protein, G i , is essential for activation of both channels. G protein-activated channel characteristics from patients with terminal heart failure did not differ from those without heart failure or guinea pig. These results suggest that ACh can shorten the action potential by activating I K(ACh) and I K1 via muscarinic receptor-linked G i proteins in human ventricular myocytes. Received: 23 September 1996/Revised: 18 December 1996  相似文献   

18.
The modulation of I A K+ current by ten trivalent lanthanide (Ln3+) cations spanning the series with ionic radii ranging from 0.99 ? to 1.14 ? was characterized by the whole-cell patch clamp technique in bovine adrenal zona fasciculata (AZF) cells. Each of the ten Ln3+s reduced I A amplitude measured at +20 mV in a concentration-dependent manner. Smaller Ln3+s were the most potent and half-maximally effective concentrations (EC50s) varied inversely with ionic radius for the larger elements. Estimation of EC50s yielded the following potency sequence: Lu3+ (EC50= 3.0 μm) ≈ Yb3+ (EC50= 2.7 μm) > Er3+ (EC50= 3.7 μm) ≥ Dy3+ (EC50= 4.7 μm) > Gd3+ (EC50= 6.7 μm) ≈ Sm3+ (EC50= 6.9 μm) > Nd3+ (EC50= 11.2 μm) > Pr3+ (EC50= 22.3 μm) > Ce3+ (EC50= 28.0 μm) > La3+ (EC50= 33.7 μm). Ln3+s altered selected voltage-dependent gating and kinetic parameters of I A with a potency and order of effectiveness that paralleled the reduction of I A amplitude. Ln3+s markedly slowed activation kinetics and shifted the voltage-dependence of I A gating such that activation and steady-state inactivation occurred at more depolarized potentials. In contrast, Ln3+s did not measurably alter inactivation or deactivation kinetics and only slightly slowed kinetics of inactivated channels returning to the closed state. Replacement of external Ca2+ with Mg2+ had no effect on the concentration-dependent inhibition of I A by Ln3+s. In contrast to their action on I A K+ current, Ln3+s inhibited T-type Ca2+ currents in AZF cells without slowing activation kinetics. These results indicate that Ln3+ modulate I A K+ channels through binding to a site on I A channels located within the electric field but which is not specific for Ca2+. They are consistent with a model where Ln3+ binding to negative charges on the gating apparatus alters the voltage-dependence and kinetics of channel opening. Ln3+s modulate transient K+ and Ca2+ currents by two fundamentally different mechanisms. Received: 21 January 1997/Revised: 3 April 1998  相似文献   

19.
When expressed in Xenopus oocytes KAAT1 increases tenfold the transport of l-leucine. Substitution of NaCl with 100 mm LiCl, RbCl or KCl allows a reduced but significant activation of l-leucine uptakes. Chloride-dependence is not strict since other pseudohalide anions such as thyocyanate are accepted. KAAT1 is highly sensitive to pH. It can transport l-leucine at pH 5.5 and 8, but the maximum uptake has been observed at pH 10, near to the physiological pH value, when amino and carboxylic groups are both deprotonated. The pH value mainly influences the V max in Na+ activation curves and l-leucine kinetics. The kinetic parameters are K mNa = 4.6 ± 2 mm, V maxNa = 14.8 ± 1.7 pmol/oocyte/5 min for pH 8.0 and K mNa = 2.8 ± 0.7 mm, V maxNa = 31.3 ± 1.9 pmol/oocyte/5 min for pH 10.0. The kinetic parameters of l-leucine uptake are: K m = 120.4 ± 24.2 μm, V max = 23.2 ± 1.4 pmol/oocyte/5 min at pH 8.0 and K m = 81.3 ± 24.2 μm, V max = 65.6 ± 3.9 pmol/oocyte/5 min at pH 10.0. On the basis of inhibition experiments, the structural features required for KAAT1 substrates are: (i) a carboxylic group, (ii) an unsubstituted α-amino group, (iii) the side chain is unnecessary, if present it should be uncharged regardless of length and ramification. Received: 27 April 1999/Revised: 10 January 2000  相似文献   

20.
We identified a Ca2+-sensitive cation channel in acutely dissociated epithelial cells from the endolymphatic sac (ES) of guinea pigs using the patch-clamp technique. Single-channel recordings showed that the cation channel had a conductance of 24.0 ± 1.3 pS (n= 8) in our standard solution. The relative ionic permeability of the channel was in the order K+= Na+ > Ca2+≫ Cl. This channel was weakly voltage-dependent but was strongly activated by Ca2+ on the cytosolic side at a concentration of around 1 mm in inside-out excised patches. With cell-attached patches, however, the channel was activated by much lower Ca2+ concentrations. Treatment of the cells, under cell-attached configuration, with ionomycin (10 μm), carbonyl cyanide 3-chlorophenylhydrazone (CCCP, 20 μm), or ATP (1 mm), which increased intracellular Ca2+ concentration ([Ca2+]i), activated the channel at an estimated [Ca2+]i from 0.6 μm to 10 μm. It is suggested that some activators of the channel were deteriorated or washed out during the formation of excised patches. Based on this Ca2+ sensitivity, we speculated that the channel contributes to the regulation of ionic balance and volume of the ES by absorbing Na+ under certain pathological conditions that will increase [Ca2+]i. This is the first report of single-channel recordings in endolymphatic sac epithelial cells. Received: 24 October 2000/Revised: 10 April 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号