首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The timed secretion of the luteinizing hormone (LH) and follicle stimulating hormone (FSH) from pituitary gonadotrophs during the estrous cycle is crucial for normal reproductive functioning. The release of LH and FSH is stimulated by gonadotropin releasing hormone (GnRH) secreted by hypothalamic GnRH neurons. It is controlled by the frequency of the GnRH signal that varies during the estrous cycle. Curiously, the secretion of LH and FSH is differentially regulated by the frequency of GnRH pulses. LH secretion increases as the frequency increases within a physiological range, and FSH secretion shows a biphasic response, with a peak at a lower frequency. There is considerable experimental evidence that one key factor in these differential responses is the autocrine/paracrine actions of the pituitary polypeptides activin and follistatin. Based on these data, we develop a mathematical model that incorporates the dynamics of these polypeptides. We show that a model that incorporates the actions of activin and follistatin is sufficient to generate the differential responses of LH and FSH secretion to changes in the frequency of GnRH pulses. In addition, it shows that the actions of these polypeptides, along with the ovarian polypeptide inhibin and the estrogen-mediated variations in the frequency of GnRH pulses, are sufficient to account for the time courses of LH and FSH plasma levels during the rat estrous cycle. That is, a single peak of LH on the afternoon of proestrus and a double peak of FSH on proestrus and early estrus. We also use the model to identify which regulation pathways are indispensable for the differential regulation of LH and FSH and their time courses during the estrous cycle. We conclude that the actions of activin, inhibin, and follistatin are consistent with LH/FSH secretion patterns, and likely complement other factors in the production of the characteristic secretion patterns in female rats.  相似文献   

2.
Gonadotropin-Releasing Hormone (GnRH) is a small neuropeptide that regulates pituitary release of luteinizing hormone (LH) and follicle-stimulating hormone (FSH). These gonadotropins are essential for the regulation of reproductive function. The GnRH-containing neurons are distributed diffusely throughout the hypothalamus and project to the median eminence where they release GnRH from their axon terminals into the hypophysiotropic portal system (1). In the portal capillaries, GnRH travels to the anterior pituitary gland to stimulate release of gonadotropins into systemic circulation. GnRH release is not continuous but rather occurs in episodic pulses. It is well established that the intermittent manner of GnRH release is essential for reproduction (2, 3).Coordination of activity of multiple GnRH neurons probably underlies GnRH pulses. Total peptide content in GnRH neurons is approximately 1.0 pg/cell (4), of which 30% likely comprises the releasable pool. Levels of GnRH during a pulse (5, 6), suggest multiple GnRH neurons are probably involved in neurosecretion. Likewise, single unit activity extracted from hypothalamic multi-unit recordings during LH release indicates changes in activity of multiple neurons (7). The electrodes with recorded activity during LH pulses are associated with either GnRH somata or fibers (8). Therefore, at least some of this activity arises from GnRH neurons.The mechanisms that result in synchronized firing in hypothalamic GnRH neurons are unknown. Elucidating the mechanisms that coordinate firing in GnRH neurons is a complex problem. First, the GnRH neurons are relatively few in number. In rodents, there are 800-2500 GnRH neurons. It is not clear that all GnRH neurons are involved in episodic GnRH release. Moreover, GnRH neurons are diffusely distributed (1). This has complicated our understanding of coordination of firing and has made many technical approaches intractable. We have optimized loose cell-attached recordings in current-clamp mode for the direct detection of action potentials and developed a recording approach that allows for simultaneous recordings from pairs of GnRH neurons.  相似文献   

3.
Gonadotropin-releasing hormone (GnRH) acts at gonadotropes to direct the synthesis of the gonadotropins, follicle-stimulating hormone (FSH), and luteinizing hormone (LH). The frequency of GnRH pulses determines the pattern of gonadotropin synthesis. Several hypotheses for how the gonadotrope decodes GnRH frequency to regulate gonadotropin subunit genes differentially have been proposed. However, key regulators and underlying mechanisms remain uncertain. We investigated the role of individual G proteins by perturbations using siRNA or bacterial toxins. In LβT2 gonadotrope cells, FSHβ gene induction depended predominantly on Gα(q/11), whereas LHβ expression depended on Gα(s). Specifically reducing Gα(s) signaling also disinhibited FSHβ expression, suggesting the presence of a Gα(s)-dependent signal that suppressed FSH biosynthesis. The presence of secreted factors influencing FSHβ expression levels was tested by studying the effects of conditioned media from Gα(s) knockdown and cholera toxin-treated cells on FSHβ expression. These studies and related Transwell culture experiments implicate Gα(s)-dependent secreted factors in regulating both FSHβ and LHβ gene expression. siRNA studies identify inhibinα as a Gα(s)-dependent GnRH-induced autocrine regulatory factor that contributes to feedback suppression of FSHβ expression. These results uncover differential regulation of the gonadotropin genes by Gα(q/11) and by Gα(s) and implicate autocrine and gonadotrope-gonadotrope paracrine regulatory loops in the differential induction of gonadotropin genes.  相似文献   

4.
The objective was to compare the relative response between rams and bulls in characteristics of LH, FSH and testosterone (T) secretion, during and after long-term treatment with GnRH analogs. Animals were treated with GnRH agonist, GnRH antagonist, or vehicle (Control) for 28 days. Serial blood samples were collected on day 21 of treatment, and at several intervals after treatment. Injections of natural sequence GnRH were used to evaluate the capacity of the pituitary to release gonadotropins during and after treatment. Treatment with GnRH agonist increased basal LH and T concentrations in both rams and bulls, with a greater relative increase in bulls. Endogenous LH pulses and LH release after administration of GnRH were suppressed during treatment with GnRH agonist. Treatment with GnRH antagonist decreased mean hormone concentrations, LH and T pulse frequency, and the release of LH and T after exogenous GnRH, with greater relative effects in bulls. Rams previously treated with antagonist had a greater release of LH after administration of GnRH compared with control rams, while rams previously treated with agonist showed a reduced LH response. Bulls previously treated with agonist had reduced FSH concentrations and LH pulse amplitudes compared with control bulls while bulls previously treated with antagonist had greater T concentrations and pulse frequency. The present study was the first direct comparison between domestic species of the response in males to treatment with GnRH analogs. The findings demonstrated that differences do occur between rams and bulls in LH, FSH and testosterone secretion during and after treatment. Also, the consequences of treatment with either GnRH analog can persist for a considerable time after discontinuation of treatment.  相似文献   

5.
目的 分析大鼠LHβ mRNA表达的促性腺激素释放激素(GnRH)受体后信号转导机制.方法 将体外培养的大鼠腺垂体促性腺激素(GTH)细胞用cAMP的兴奋剂FSK或抑制剂SQ22536处理后,再用高频GnRH脉冲刺激,然后用实时荧光定量PCR法测定细胞LHβ mRNA的Ct值,并与空白组比较.结果 LHβ mRNA的Ct值随着GTH细胞cAMP含量的增高而显著降低,随着cAMP含量的降低而显著增高.结论 cAMP是高频GnRH脉冲刺激所引起的LHβ mRNA表达的受体后的信号转导途径.  相似文献   

6.
A study was conducted to identify relationships between serum sex steroid concentrations and release of gonadotropins in dairy cows with ovarian cysts. Cows with ovarian cysts were grouped according to sex steroid profiles as being under estrogenic (n = 6) or low steroid (n = 6) influence. All cows were submitted to a sampling and treatment protocol to 1) record basal pulsatile release of gonadotropins and 2) determine whether luteinizing hormone (LH) or follicle stimulating hormone (FSH) was released after sequential administration of exogenous estradiol and gonadotropin releasing hormone (GnRH) treatments were given 30 h apart. Basal LH was higher in the estrogen-influence group (P < 0.05). There were no differences between groups in basal FSH concentrations or frequency and amplitude of pulsatile LH or FSH release. Only one of the twelve cows, an individual from the low steroid group, had a preovulatory-like surge of gonadotropins after exogenous estradiol. All cows released LH and FSH in response to GnRH treatment, with no differences between groups. These results show that 1) there is considerable variation in pulsatile release of gonadotropins in cows with ovarian cysts, even among individuals with similar sex steroid profiles, and 2) suggest that a factor in the persistence, and perhaps initiation, of the cystic condition is refractoriness to the positive feedback effect of estradiol on gonadotropin release.  相似文献   

7.
In ovariectomized pigs, estradiol treatment induces a preovulatory-like luteinizing hormone (LH) surge, but only after serum LH concentrations are suppressed for 48 h. This inhibition of LH release is attributable in large part to inhibition of gonadotropin-releasing hormone (GnRH) release. The present report examines the dependency of the estradiol-induced LH surge on this preceding phase of negative feedback. Ten ovariectomized gilts were given an i.m. injection of estradiol benzoate (10 micrograms/kg BW). Beginning at the time of estradiol treatment, 5 of these gilts received 1-microgram GnRH pulses i.v. every 45 min for 48 h, i.e. during the period of negative feedback. The remaining 5 control gilts received comparable infusions of vehicle. Estradiol induced the characteristic biphasic LH response in control gilts. On the other hand, the inhibitory LH response to estradiol was prevented and the ensuing LH surge was blocked in 4 of the 5 gilts given GnRH pulses during the negative feedback phase. These results indicate that suppressing release of GnRH and/or LH is an important antecedent to full expression of the LH surge in ovariectomized pigs. Assimilation of this observation with the existing literature provides novel insights into the neuroendocrine control of LH secretion in castrated and ovary-intact gilts.  相似文献   

8.
Gonadotropin-releasing hormone and the control of gonadotrope function   总被引:4,自引:0,他引:4  
Normal gametogenesis and steroidogenesis is highly dependent on the pulsatile release of hypothalamic GnRH that binds high-affinity receptors present at the surface of pituitary gonadotrophs thereby triggering the synthesis and release of the gonadotropins LH and FSH. The mammalian GnRH receptor displays the classical heptahelical structure of G protein-coupled receptors with, however, a unique feature, the lack of a C-terminal tail. Accordingly, it does not desensitise sensu stricto, and internalises very poorly. It is now well established that GnRH stimulation induces the activation of a complex network of transduction pathways involved in the control of gonadotropin release and subunit gene expression. Other authors and ourselves have demonstrated that the GnRH action is associated with an increased complexity regarding gene regulation/cell function. Indeed GnRH affects the GnRH receptor gene itself and a number of additional genes that include some involved in cell signalling and auto-/paracrine regulation. The fact that GnRH regulates the expression of its own receptor, together with a host of other genes typically involved in its signal transduction cascades implies alteration/auto-adaptation in gonadotropic responsiveness. Furthermore, some of these genes respond differentially depending on whether the GnRH stimulation is intermittent or permanent suggesting specific roles in the dual process of activation/desensitisation. Thus, it can be assumed that the importance of pulsatility of GnRH action is closely related to, or dependent on, the inability of the GnRH receptor to desensitise. Moreover, multiple post-receptor events are crucial for both the regulation/plasticity of gonadotropic function and the maintenance of cell integrity.  相似文献   

9.
IGF-1 in the brain as a regulator of reproductive neuroendocrine function   总被引:4,自引:0,他引:4  
Given the close relationship among neuroendocrine systems, it is likely that there may be common signals that coordinate the acquisition of adult reproductive function with other homeostatic processes. In this review, we focus on central nervous system insulin-like growth factor-1 (IGF-1) as a signal controlling reproductive function, with possible links to somatic growth, particularly during puberty. In vertebrates, the appropriate neurosecretion of the decapeptide gonadotropin-releasing hormone (GnRH) plays a critical role in the progression of puberty. Gonadotropin-releasing hormone is released in pulses from neuroterminals in the median eminence (ME), and each GnRH pulse triggers the production of the gonadotropins, luteinizing hormone (LH) and follicle-stimulating hormone (FSH). These pituitary hormones in turn stimulate the synthesis and release of sex steroids by the gonads. Any factor that affects GnRH or gonadotropin pulsatility is important for puberty and reproductive function and, among these factors, the neurotrophic factor IGF-1 is a strong candidate. Although IGF-1 is most commonly studied as the tertiary peripheral hormone in the somatotropic axis via its synthesis in the liver, IGF-1 is also synthesized in the brain, within neurons and glia. In neuroendocrine brain regions, central IGF-1 plays roles in the regulation of neuroendocrine functions, including direct actions on GnRH neurons. Moreover, GnRH neurons themselves co-express IGF-1 and the IGF-1 receptor, and this expression is developmentally regulated. Here, we examine the role of IGF-1 acting in the hypothalamus as a critical link between reproductive and other neuroendocrine functions.  相似文献   

10.
The neurohormone gonadotropin-releasing hormone (GnRH) is a decapeptide which is synthesized in the hypothalamus and released into the hypophysial portal system in a pulsatile manner. GnRH exerts its effect on the anterior pituitary gonadotrophs where it regulates the secretion and synthesis of gonadotropins (luteinizing hormone and follicle-stimulating hormone) through receptor-mediated actions. The GnRH receptor has been characterized and shown to be coupled to the formation of 'second messengers' which participate in signal transduction mechanisms. GnRH stimulation of luteinizing hormone release is a Ca2(+)-dependent process. G protein, phosphoinositide hydrolysis, protein kinase C as well as arachidonic acid and some of its metabolites were identified as possible mediators in the process.  相似文献   

11.
In a series of four experiments, the temporal development of acute inhibitory and delayed stimulatory effects of 17 beta-estradiol (E) on luteinizing hormone (LH) release by superfused rat anterior pituitary cells pulsed with gonadotropin-releasing hormone (GnRH) was studied. Dispersed anterior pituitary cells from ovariectomized rats were cultured on Bio-Beads for 3 days and then placed in columns and superfused for up to 24 hr. During superfusion, the cells were exposed to GnRH pulses (3 X 10(-9) M, one 6-min pulse/hr). Cells treated with E (3 X 10(-10) M) either before (only 24 hr prior to superfusion) or before and during superfusion released significantly (P less than 0.05) more LH in response to the first few pulses of GnRH than cells treated with diluent. In contrast, cells treated with E only during superfusion initially released less GnRH-induced LH than cells treated with diluent. In a subsequent experiment, the inhibitory effect of E reached a maximum by 1.5 hr (P less than 0.01), and then gradually disappeared after 4.5 hr. Cells superfused simultaneously with E and fixed "low"-dose GnRH (5 X 10(-10) M) pulses did not exhibit enhanced LH responses with time to that dose of GnRH. However, E-superfused cells responded more than diluent-superfused cells to subsequent stimulation with a higher-dose GnRH pulse. Superfusion of cells with E for 16.5 hr in the absence of GnRH pulses also did not increase release of LH to low-dose (5 X 10(-10) M) pulses of GnRH, yet did cause a transitory increase to subsequent high-dose (10(-8) M) GnRH pulses. In conclusion, these results demonstrate the direct biphasic inhibitory then stimulatory effects of E on GnRH-induced LH release by superfused rat anterior pituitary cells. Expression of the stimulatory effect of E is related to the dose of GnRH.  相似文献   

12.
A mathematical model is developed to investigate the rate of release of luteinizing hormone (LH) from pituitary gonadotropes in response to short pulses of gonadotropin-releasing hormone (GnRH). The model includes binding of the hormone to its receptor, dimerization, interaction with a G protein, production of inositol 1,4, 5-trisphosphate, release of Ca(2+) from the endoplasmic reticulum, entrance of Ca(2+) into the cytosol via voltage-gated membrane channels, pumping of Ca(2+) out of the cytosol via membrane and endoplasmic reticulum pumps, and release of LH. Cytosolic Ca(2+) dynamics are simplified (i.e., oscillations are not included in the model), and it is assumed that there is only one pool of releasable LH. Despite these and other simplifications, the model explains the qualitative features of LH release in response to GnRH pulses of various durations and different concentrations in the presence and absence of external Ca(2+).  相似文献   

13.
To evaluate the effect of progesterone on the synthesis and secretion of gonadotropins, ovariectomized ewes either were treated with progesterone (n = 5) for 3 wk or served as controls (n = 5) during the anestrous season. After treatment for 3 wk, blood samples were collected from progesterone-treated and ovariectomized ewes. After collection of blood samples, hypothalamic and hypophyseal tissues were collected from all ewes. Half of each pituitary was used to determine the content of luteinizing hormone (LH) and follicle-stimulating hormone (FSH), and the number of receptors for gonadotropin-releasing hormone (GnRH). The amounts of mRNA for LH beta subunit, FSH beta subunit, alpha subunit, growth hormone, and prolactin were measured in the other half of each pituitary. Treatment with progesterone reduced mean serum concentrations of LH (p less than 0.001) but ot FSH (p greater than 0.05). Further, progesterone decreased (p less than 0.05) the total number of pulses of LH. We were unable to detect pulsatile release of FSH. Hypothalamic content of GnRH, number of receptors for GnRH, pituitary content of gonadotropins and mRNA for LH beta subunit, FSH beta subunit, alpha subunit, growth hormone, and prolactin were not affected (p greater than 0.05) by treatment with progesterone. Thus, after treatment with progesterone, serum concentrations of LH (but not FSH) are decreased. This effect, however, is not due to a decrease in the steady-state amount of mRNA for LH beta or alpha subunits.  相似文献   

14.
The gonadotrope is a complex cell that expresses receptors for gonadotropin releasing hormone (GnRH) and estrogen. It has synthetic machinery for the production of 3 gonadotropin subunits which are assembled into two gonadotropins, luteinising hormone (LH) and follicle stimulating hormone (FSH). The production and secretion of LH and FSH are differentially regulated by GnRH and estrogen. Patterns of secretion of LH are dictated by the pulsatile release of GnRH from the median eminence as well as the feedback effects of estrogen. The means by which estrogen plays such an important role in the regulation of LH and FSH is reviewed in this chapter, with emphasis on work that has been done in the sheep. Estrogen regulates the second messenger systems in the gonadotrope as well as the number of GnRH receptors and the function of ion channels in the plasma membrane. Estrogen also regulates gene expression in these cells. Additionally, GnRH appears to regulate the level of estrogen receptor in the ovine gonadotrope, so there is substantial cross-talk between the signalling pathways for GnRH and estrogen. No clear picture has emerged as to how estrogen exerts a positive feedback effect on the gonadotrope and it is suggested that this might be forthcoming from more definitive studies on the way that estrogen regulates the second messenger systems and the trafficking of secretory vesicles.  相似文献   

15.
We studied the effects of 17 beta-estradiol (E2) on luteinizing hormone (LH) and follicle-stimulating hormone (FSH) release induced by drugs that activate different intracellular signal transduction mechanisms in rat anterior pituitary cells. Cells were pretreated with E2 (6 x 10(-10) M) or diluent for 24 h. Then, both E2- and diluent-pretreated cells were incubated for 4 h with E2 or diluent, respectively, with or without drugs, and in the presence or absence of gonadotropin-releasing hormone (GnRH). Media were assayed for LH and FSH by radioimmunoassays. E2 treatment had no effect on basal FSH release, but occasionally stimulated basal LH release. Phospholipase C (PLC), L-alpha-1,2-dioctanoyl glycerol (C8), veratridine, 8-bromo-cyclic adenosine 3',5'-monophosphate (8-Br-cAMP), melittin (a phospholipase A2 [PLA2] activator), arachidonic acid, PLA2, and GnRH all stimulated LH and FSH release in both E2- and diluent-treated cells. E2 treatment increased both LH and FSH release induced by GnRH, PLC, C8, veratridine, and 8-Br-cAMP, but not by melittin, arachidonic acid, and PLA2. Neither C8, PLA2, nor arachidonic acid in combination with a maximal dose of GnRH had additive effects on either LH or FSH release, whereas melittin increased the maximal response to GnRH in both E2- and diluent-treated cells. The effects of veratridine and 8-Br-cAMP depended on dose of GnRH and presence or absence of E2. These results suggest that E2 augments stimulus-coupled gonadotropin release by interacting with the Ca2+-, and/or diacylglycerol-, and cAMP-activated pathways, but not with the arachidonic acid-activated pathway.  相似文献   

16.
17.
The effects of hypothalamic lesions designed to destroy either the anterior median eminence (ME) or the posterior and mid-ME on pulsatile release of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) were determined in castrated male rats. In sham-operated animals, mean plasma FSH concentrations rose to peak at 10 min after the onset of sampling, whereas LH declined to a nadir during this time. In the final sample at 120 min, the mean FSH concentrations peaked as LH decreased to its minimal value. In rats with anterior ME lesions, there was suppression of LH pulses with continuing FSH pulses in 12 of 21 rats. On the other hand, in animals with posterior to mid-ME lesions, 3 out of 21 rats had elimination of FSH pulses, whereas LH pulses were maintained. Fifteen of 42 operated rats had complete ME lesions, and pulses of both hormones were abolished. The remaining 12 rats had partial ME lesions that produced a partial block of the release of both hormones. The results support the concept of separate hypothalamic control of FSH and LH release with the axons of the putative FSH-releasing factor (FSHRF) neuronal system terminating primarily in the mid- to caudal ME, whereas those of the LHRH neuronal system terminate in the anterior and mid-median eminence. We hypothesize that pulses of FSH alone are mediated by release of the FSHRF into the hypophyseal portal vessels, whereas those of LH alone are mediated by LHRH. Pulses of both gonadotropins simultaneously may be mediated by pulses of both releasing hormones simultaneously. Alternatively, relatively large pulses of LHRH alone may account for simultaneous pulses of both gonadotropins since LHRH has intrinsic FSH-releasing activity.  相似文献   

18.
Luteinizing hormone and follicle stimulating hormone secretion was stimulated by 4 min pulses of arachidonic acid (3 X 10(-5) to 10(-4)M) in superfused rat pituitary cells. The effect of its lipoxygenase metabolites, 5-hydroxy-6,8,11,14-eicosatetranoic acid (5-HETE) and 15-hydroxy-5,8,10,14-eicosatetranoic acid (15-HETE) was more potent on hormone release when added in the same dose. Using 3 X 10(-5)M 5-HETE, its releasing activity on gonadotropins was comparable to that of GnRH (10(-9)M). 15-HETE (3 X 10(-5)M) was even more potent on LH and FSH secretion than 5-HETE. The secretory profile induced by 5-HETE and 15-HETE was also similar to that shown for GnRH, resulting in a rapid increase and a more prolonged decline of the hormone release. The addition of these fatty acids to superfused pituitary cells did not alter the response of the cells to their physiological ligand. These findings give further support to the proposal that metabolites of arachidonic acid may be involved in receptor-mediated mechanisms of gonadotropin release in pituitary cells.  相似文献   

19.
Ovariectomized gilts (n = 63) were given estradiol benzoate (estradiol), antiserum to neutralize endogenous GnRH, and pulses of a GnRH agonist (GnRH-A) to stimulate release of LH. GnRH-A was given as 200-ng pulses hourly from 0 to 54 h and as 100- or 200-ng pulses every 30 or 60 min from 54 to 96 h after estradiol. Estradiol alone suppressed LH from 6 to 54 h and elicited an LH surge that peaked at 72 h. When GnRH-A was given every 30-60 min from 0 to 96 h, estradiol suppressed LH for 6-12 h, but then LH returned to pre-estradiol concentrations. When pulses of GnRH-A were given only between 54 and 96 h after estradiol, the surge of LH was related positively to dose and frequency of GnRH-A. We conclude that 1) estrogen acts at the hypothalamus to inhibit release of GnRH for 54 h and then causes a synchronous release of GnRH; 2) estrogen acts at the pituitary to block its response to GnRH for 6-12 h and enhances the accumulation of releasable LH; and 3) magnitude of the LH surge is dependent on the amount of GnRH stimulation.  相似文献   

20.
Gonadotropin releasing hormone (GnRH) is an essential factor in the regulation of synthesis and release of pituitary gonadotropins. After binding to specific receptors and coupling with G proteins, it triggers the intracellular signaling involving the synthesis of inositol phosphates and diacylglycerol. Previously we have showed that certain metal complexes with GnRH, i.e. copper (Cu-GnRH) and nickel (Ni-GnRH) are able to bind to the GnRH receptors. The intracellular signalling of these complexes, however, has not been yet elucidated. In this experiment, the ability of the Cu-GnRH and Ni-GnRH complexes to modulate cAMP synthesis and phosphoinositols formation in the pig anterior pituitary cells in vitro was studied. The native GnRH and its metal complexes stimulated the luteinizing hormone (LH) release, but only the effect of Cu-GnRH was found to be a dose-dependent. The metal complexes did not significantly influence inositol phosphates accumulation, while their effect on cAMP synthesis was significantly more potent than that of GnRH alone. We conclude that the Cu-GnRH and Ni-GnRH complexes increase LH release in the porcine pituitary cells although their intracellular signaling is different from that of the native GnRH. It seems that metal complexes with GnRH deserve more attention in further studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号