首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the northwestern Black Sea, methane oxidation rates reveal that above shallow and deep gas seeps methane is removed from the water column as efficiently as it is at sites located off seeps. Hence, seeps should not have a significant impact on the estimated annual flux of approximately 4.1 x 10(9) mol methane to the atmosphere [W. S. Reeburgh, B. B. Ward, S. C. Wahlen, K. A. Sandbeck, K. A. Kilatrick, and L. J. Kerkhof, Deep-Sea Res. 38(Suppl. 2):S1189-S1210, 1991]. Both the stable carbon isotopic composition of dissolved methane and the microbial community structure analyzed by fluorescent in situ hybridization provide strong evidence that microbially mediated methane oxidation occurs. At the shelf, strong isotope fractionation was observed above high-intensity seeps. This effect was attributed to bacterial type I and II methanotrophs, which on average accounted for 2.5% of the DAPI (4',6'-diamidino-2-phenylindole)-stained cells in the whole oxic water column. At deep sites, in the oxic-anoxic transition zone, strong isotopic fractionation of methane overlapped with an increased abundance of Archaea and Bacteria, indicating that these organisms are involved in the oxidation of methane. In underlying anoxic water, we successfully identified the archaeal methanotrophs ANME-1 and ANME-2, eachof which accounted for 3 to 4% of the total cell counts. ANME-1 and ANME-2 appear as single cells in anoxicwater, compared to the sediment, where they may form cell aggregates with sulfate-reducing bacteria (A. Boetius, K. Ravenschlag, C. J. Schubert, D. Rickert, F. Widdel, A. Giesecke, R. Amann, B. B. J?rgensen, U. Witte, and O. Pfannkuche, Nature 407:623-626, 2000; V. J. Orphan, C. H. House, K.-U. Hinrichs, K. D. McKeegan, and E. F. DeLong, Proc. Natl. Acad. Sci. USA 99:7663-7668, 2002).  相似文献   

2.
Inputs of CH(4) from sediments, including methane seeps on the continental margin and methane-rich mud volcanoes on the abyssal plain, make the Black Sea the world's largest surface water reservoir of dissolved methane and drive a high rate of aerobic and anaerobic oxidation of methane in the water column. Here we present the first combined organic geochemical and molecular ecology data on a water column profile of the western Black Sea. We show that aerobic methanotrophs type I are responsible for methane oxidation in the oxic water column and ANME-1- and ANME-2-related organisms for anaerobic methane oxidation. The occurrence of methanotrophs type I cells in the anoxic zone suggests that inactive cells settle to deeper waters. Molecular and biomarker results suggest that a clear distinction between the occurrence of ANME-1- and ANME-2-related lineages exists, i.e. ANME-1-related organisms are responsible for anaerobic methane oxidation below 600 m water depth, whereas ANME-2-related organisms are responsible for this process in the anoxic water column above approximately 600 m water depth.  相似文献   

3.
The consumption of methane in anoxic marine sediments is a biogeochemical phenomenon mediated by two archaeal groups (ANME-1 and ANME-2) that exist syntrophically with sulfate-reducing bacteria. These anaerobic methanotrophs have yet to be recovered in pure culture, and key aspects of their ecology and physiology remain poorly understood. To characterize the growth and physiology of these anaerobic methanotrophs and the syntrophic sulfate-reducing bacteria, we incubated marine sediments using an anoxic, continuous-flow bioreactor during two experiments at different advective porewater flow rates. We examined the growth kinetics of anaerobic methanotrophs and Desulfosarcina-like sulfate-reducing bacteria using quantitative PCR as a proxy for cell counts, and measured methane oxidation rates using membrane-inlet mass spectrometry. Our data show that the specific growth rates of ANME-1 and ANME-2 archaea differed in response to porewater flow rates. ANME-2 methanotrophs had the highest rates in lower-flow regimes (μANME-2 = 0.167 · week−1), whereas ANME-1 methanotrophs had the highest rates in higher-flow regimes (μANME-1 = 0.218 · week−1). In both incubations, Desulfosarcina-like sulfate-reducing bacterial growth rates were approximately 0.3 · week−1, and their growth dynamics suggested that sulfate-reducing bacterial growth might be facilitated by, but not dependent upon, an established anaerobic methanotrophic population. ANME-1 growth rates corroborate field observations that ANME-1 archaea flourish in higher-flow regimes. Our growth and methane oxidation rates jointly demonstrate that anaerobic methanotrophs are capable of attaining substantial growth over a range of environmental conditions used in these experiments, including relatively low methane partial pressures.  相似文献   

4.
Microbial communities in hydrothermally active sediments of the Guaymas Basin (Gulf of California, Mexico) were studied by using 16S rRNA sequencing and carbon isotopic analysis of archaeal and bacterial lipids. The Guaymas sediments harbored uncultured euryarchaeota of two distinct phylogenetic lineages within the anaerobic methane oxidation 1 (ANME-1) group, ANME-1a and ANME-1b, and of the ANME-2c lineage within the Methanosarcinales, both previously assigned to the methanotrophic archaea. The archaeal lipids in the Guaymas Basin sediments included archaeol, diagnostic for nonthermophilic euryarchaeota, and sn-2-hydroxyarchaeol, with the latter compound being particularly abundant in cultured members of the Methanosarcinales. The concentrations of these compounds were among the highest observed so far in studies of methane seep environments. The δ-13C values of these lipids (δ-13C = −89 to −58‰) indicate an origin from anaerobic methanotrophic archaea. This molecular-isotopic signature was found not only in samples that yielded predominantly ANME-2 clones but also in samples that yielded exclusively ANME-1 clones. ANME-1 archaea therefore remain strong candidates for mediation of the anaerobic oxidation of methane. Based on 16S rRNA data, the Guaymas sediments harbor phylogenetically diverse bacterial populations, which show considerable overlap with bacterial populations of geothermal habitats and natural or anthropogenic hydrocarbon-rich sites. Consistent with earlier observations, our combined evidence from bacterial phylogeny and molecular-isotopic data indicates an important role of some novel deeply branching bacteria in anaerobic methanotrophy. Anaerobic methane oxidation likely represents a significant and widely occurring process in the trophic ecology of methane-rich hydrothermal vents. This study stresses a high diversity among communities capable of anaerobic oxidation of methane.  相似文献   

5.
A complex system of muddy fluid-discharging and methane (CH4)-releasing seeps was discovered in a valley of the river Mukhrinskaya, one of the small rivers of the Irtysh Basin, West Siberia. CH4 flux from most (90%) of these gas ebullition sites did not exceed 1.45 g CH4 h−1, while some seeps emitted up to 5.54 g CH4 h−1. The δ13C value of methane released from these seeps varied between −71.1 and −71.3‰, suggesting its biogenic origin. Although the seeps were characterized by low in situ temperatures (3.5 to 5°C), relatively high rates of methane oxidation (15.5 to 15.9 nmol CH4 ml−1 day−1) were measured in mud samples. Fluorescence in situ hybridization detected 107 methanotrophic bacteria (MB) per g of mud (dry weight), which accounted for up to 20.5% of total bacterial cell counts. Most (95.8 to 99.3%) methanotroph cells were type I (gammaproteobacterial) MB. The diversity of methanotrophs in this habitat was further assessed by pyrosequencing of pmoA genes, encoding particulate methane monooxygenase. A total of 53,828 pmoA gene sequences of seep-inhabiting methanotrophs were retrieved and analyzed. Nearly all of these sequences affiliated with type I MB, including the Methylobacter-Methylovulum-Methylosoma group, lake cluster 2, and several as-yet-uncharacterized methanotroph clades. Apparently, microbial communities attenuating methane fluxes from these local but strong CH4 sources in floodplains of high-latitude rivers have a large proportion of potentially novel, psychrotolerant methanotrophs, thereby providing a challenge for future isolation studies.  相似文献   

6.
7.
8.
Samples from three submerged sites (MC, a core obtained in the methane seep area; MR, a reference core obtained at a distance from the methane seep; and HC, a gas-bubbling carbonate sample) at the Kuroshima Knoll in the southern Ryuku arc were analyzed to gain insight into the organisms present and the processes involved in this oxic-anoxic methane seep environment. 16S rRNA gene analyses by quantitative real-time PCR and clone library sequencing revealed that the MC core sediments contained abundant archaea (~34% of the total prokaryotes), including both mesophilic methanogens related to the genus Methanolobus and ANME-2 members of the Methanosarcinales, as well as members of the δ-Proteobacteria, suggesting that both anaerobic methane oxidation and methanogenesis occurred at this site. In addition, several functional genes connected with methane metabolism were analyzed by quantitative competitive-PCR, including the genes encoding particulate methane monooxygenase (pmoA), soluble methane monooxygenase (mmoX), methanol dehydrogenese (mxaF), and methyl coenzyme M reductase (mcrA). In the MC core sediments, the most abundant gene was mcrA (2.5 × 106 copies/g [wet weight]), while the pmoA gene of the type I methanotrophs (5.9 × 106 copies/g [wet weight]) was most abundant at the surface of the MC core. These results indicate that there is a very complex environment in which methane production, anaerobic methane oxidation, and aerobic methane oxidation all occur in close proximity. The HC carbonate site was rich in γ-Proteobacteria and had a high copy number of mxaF (7.1 × 106 copies/g [wet weight]) and a much lower copy number of the pmoA gene (3.2 × 102 copies/g [wet weight]). The mmoX gene was never detected. In contrast, the reference core contained familiar sequences of marine sedimentary archaeal and bacterial groups but not groups specific to C1 metabolism. Geochemical characterization of the amounts and isotopic composition of pore water methane and sulfate strongly supported the notion that in this zone both aerobic methane oxidation and anaerobic methane oxidation, as well as methanogenesis, occur.  相似文献   

9.
Small mud volcanoes (cold seeps), which are common in the floodplains of northern rivers, are potentially important (although poorly studied) sources of atmospheric methane. Field research on the cold seeps of the Mukhrina River (Khanty-Mansiysk Autonomous okrug, Russia) revealed methane fluxes from these structures to be orders of magnitude higher than from equivalent areas of the mid-taiga bogs. Microbial communities developing around the seeps were formed under conditions of high methane concentrations, low temperatures (3–5°C), and near-neutral pH. Molecular identification of methane-oxidizing bacteria from this community by analysis of the pmoA gene encoding particulate methane monooxygenase revealed both type I and type II methanotrophs (classes Gammaproteobacteria and Alphaproteobacteria, respectively), with prevalence of type I methanotrophs. Among the latter, microorganisms related to Methylobacter psychrophilus and Methylobacter tundripaludum, Crenothrix polyspora (a stagnant water dweller), and a number of methanotrophs belonging to unknown taxa were detected. Growth characteristics of two methanotrophic isolates were determined. Methylobacter sp. CMS7 exhibited active growth at 4–10°C, while Methylocystis sp. SB12 grew better at 20°C. Experimental results confirmed the major role of methanotrophic gammaproteobacteria in controlling the methane emission from cold river seeps.  相似文献   

10.
Authigenic carbonates represent a significant microbial sink for methane, yet little is known about the microbiome responsible for the methane removal. We identify carbonate microbiomes distributed over 21 locations hosted by seven different cold seeps in the Pacific and Atlantic Oceans by carrying out a gene-based survey using 16S rRNA- and mcrA gene sequencing coupled with metagenomic analyses. Based on 16S rRNA gene amplicon analyses, these sites were dominated by bacteria affiliated to the Firmicutes, Alpha- and Gammaproteobacteria. ANME-1 and -2 archaeal clades were abundant in the carbonates yet their typical syntrophic partners, sulfate-reducing bacteria, were not significantly present. Based on mcrA amplicon analyses, the Candidatus Methanoperedens clades were also highly abundant. Our metagenome analysis indicated that methane oxidizers affiliated to the ANME-1 and -2, may be capable of performing complete methane- and potentially short-chain alkane oxidation independently using oxidized sulfur and nitrogen compounds as terminal electron acceptors. Gammaproteobacteria are hypothetically capable of utilizing oxidized nitrogen compounds and may be involved in syntrophy with methane-oxidizing archaea. Carbonate structures represent a window for a more diverse utilization of electron acceptors for anaerobic methane oxidation along the Atlantic and Pacific Margin.Subject terms: Microbiology, Biogeochemistry  相似文献   

11.
Submarine mud volcanoes are formed by expulsions of mud, fluids, and gases from deeply buried subsurface sources. They are highly reduced benthic habitats and often associated with intensive methane seepage. In this study, the microbial diversity and community structure in methane-rich sediments of the Haakon Mosby Mud Volcano (HMMV) were investigated by comparative sequence analysis of 16S rRNA genes and fluorescence in situ hybridization. In the active volcano center, which has a diameter of about 500 m, the main methane-consuming process was bacterial aerobic oxidation. In this zone, aerobic methanotrophs belonging to three bacterial clades closely affiliated with Methylobacter and Methylophaga species accounted for 56%+/-8% of total cells. In sediments below Beggiatoa mats encircling the center of the HMMV, methanotrophic archaea of the ANME-3 clade dominated the zone of anaerobic methane oxidation. ANME-3 archaea form cell aggregates mostly associated with sulfate-reducing bacteria of the Desulfobulbus (DBB) branch. These ANME-3/DBB aggregates were highly abundant and accounted for up to 94%+/-2% of total microbial biomass at 2 to 3 cm below the surface. ANME-3/DBB aggregates could be further enriched by flow cytometry to identify their phylogenetic relationships. At the outer rim of the mud volcano, the seafloor was colonized by tubeworms (Siboglinidae, formerly known as Pogonophora). Here, both aerobic and anaerobic methane oxidizers were found, however, in lower abundances. The level of microbial diversity at this site was higher than that at the central and Beggiatoa species-covered part of the HMMV. Analysis of methyl-coenzyme M-reductase alpha subunit (mcrA) genes showed a strong dominance of a novel lineage, mcrA group f, which could be assigned to ANME-3 archaea. Our results further support the hypothesis of Niemann et al. (54), that high methane availability and different fluid flow regimens at the HMMV provide distinct niches for aerobic and anaerobic methanotrophs.  相似文献   

12.
The consumption of methane in anoxic marine sediments is a biogeochemical phenomenon mediated by two archaeal groups (ANME-1 and ANME-2) that exist syntrophically with sulfate-reducing bacteria. These anaerobic methanotrophs have yet to be recovered in pure culture, and key aspects of their ecology and physiology remain poorly understood. To characterize the growth and physiology of these anaerobic methanotrophs and the syntrophic sulfate-reducing bacteria, we incubated marine sediments using an anoxic, continuous-flow bioreactor during two experiments at different advective porewater flow rates. We examined the growth kinetics of anaerobic methanotrophs and Desulfosarcina-like sulfate-reducing bacteria using quantitative PCR as a proxy for cell counts, and measured methane oxidation rates using membrane-inlet mass spectrometry. Our data show that the specific growth rates of ANME-1 and ANME-2 archaea differed in response to porewater flow rates. ANME-2 methanotrophs had the highest rates in lower-flow regimes (mu(ANME-2) = 0.167 . week(-1)), whereas ANME-1 methanotrophs had the highest rates in higher-flow regimes (mu(ANME-1) = 0.218 . week(-1)). In both incubations, Desulfosarcina-like sulfate-reducing bacterial growth rates were approximately 0.3 . week(-1), and their growth dynamics suggested that sulfate-reducing bacterial growth might be facilitated by, but not dependent upon, an established anaerobic methanotrophic population. ANME-1 growth rates corroborate field observations that ANME-1 archaea flourish in higher-flow regimes. Our growth and methane oxidation rates jointly demonstrate that anaerobic methanotrophs are capable of attaining substantial growth over a range of environmental conditions used in these experiments, including relatively low methane partial pressures.  相似文献   

13.
The oxidation of methane in anoxic marine sediments is thought to be mediated by a consortium of methane-consuming archaea and sulfate-reducing bacteria. In this study, we compared results of rRNA gene (rDNA) surveys and lipid analyses of archaea and bacteria associated with methane seep sediments from several different sites on the Californian continental margin. Two distinct archaeal lineages (ANME-1 and ANME-2), peripherally related to the order Methanosarcinales, were consistently associated with methane seep marine sediments. The same sediments contained abundant 13C-depleted archaeal lipids, indicating that one or both of these archaeal groups are members of anaerobic methane-oxidizing consortia. 13C-depleted lipids and the signature 16S rDNAs for these archaeal groups were absent in nearby control sediments. Concurrent surveys of bacterial rDNAs revealed a predominance of δ-proteobacteria, in particular, close relatives of Desulfosarcina variabilis. Biomarker analyses of the same sediments showed bacterial fatty acids with strong 13C depletion that are likely products of these sulfate-reducing bacteria. Consistent with these observations, whole-cell fluorescent in situ hybridization revealed aggregations of ANME-2 archaea and sulfate-reducing Desulfosarcina and Desulfococcus species. Additionally, the presence of abundant 13C-depleted ether lipids, presumed to be of bacterial origin but unrelated to ether lipids of members of the order Desulfosarcinales, suggests the participation of additional bacterial groups in the methane-oxidizing process. Although the Desulfosarcinales and ANME-2 consortia appear to participate in the anaerobic oxidation of methane in marine sediments, our data suggest that other bacteria and archaea are also involved in methane oxidation in these environments.  相似文献   

14.
An area of cold methane seeps at the bottom of the Laptev Sea was investigated. High rates of methane oxidation were revealed in the sediments and in the water column. Anaerobic methane oxidation carried out by the ANME-2 a/b consortium was coupled to sulfate reduction. Bacteria of the genera Sulfurovum and Arcobacter were the agents of the sulfur cycle. Methane unconsumed in the sediments diffused into the near-bottom water, where it was oxidized by methanotrophic bacteria. Methanotrophic activity was essential for development of symbiotrophic tubeworms of the upper sediment layers, which were responsible for the process of bioturbation.  相似文献   

15.
Cold seeps, located along the Sonora Margin transform fault in the Guaymas Basin, were extensively explored during the ‘BIG'' cruise in June 2010. They present a seafloor mosaic pattern consisting of different faunal assemblages and microbial mats. To investigate this mostly unknown cold and hydrocarbon-rich environment, geochemical and microbiological surveys of the sediments underlying two microbial mats and a surrounding macrofaunal habitat were analyzed in detail. The geochemical measurements suggest biogenic methane production and local advective sulfate-rich fluxes in the sediments. The distributions of archaeal communities, particularly those involved in the methane cycle, were investigated at different depths (surface to 18 cm below the sea floor (cmbsf)) using complementary molecular approaches, such as Automated method of Ribosomal Intergenic Spacer Analysis (ARISA), 16S rRNA libraries, fluorescence in situ hybridization and quantitative polymerase chain reaction with new specific primer sets targeting methanogenic and anaerobic methanotrophic lineages. Molecular results indicate that metabolically active archaeal communities were dominated by known clades of anaerobic methane oxidizers (archaeal anaerobic methanotroph (ANME)-1, -2 and -3), including a novel ‘ANME-2c Sonora'' lineage. ANME-2c were found to be dominant, metabolically active and physically associated with syntrophic Bacteria in sulfate-rich shallow sediment layers. In contrast, ANME-1 were more prevalent in the deepest sediment samples and presented a versatile behavior in terms of syntrophic association, depending on the sulfate concentration. ANME-3 were concentrated in small aggregates without bacterial partners in a restricted sediment horizon below the first centimetres. These niche specificities and syntrophic behaviors, depending on biological surface assemblages and environmental availability of electron donors, acceptors and carbon substrates, suggest that ANME could support alternative metabolic pathways than syntrophic anaerobic oxidation of methane.  相似文献   

16.
Sediments overlying a brine pool methane seep in the Gulf of Mexico (Green Canyon 205) were analyzed using molecular and geochemical approaches to identify geochemical controls on microbial community composition and stratification. 16S rRNA gene and rRNA clone libraries, as well as mcrA gene clone libraries, showed that the archaeal community consists predominantly of ANME-1b methane oxidizers; no archaea of other ANME subgroups were found with general and group-specific PCR primers. The ANME-1b community was found in the sulfate-methane interface, where undersaturated methane concentrations of ca. 100 to 250 μM coexist with sulfate concentrations around 10 mM. Clone libraries of dsrAB genes and bacterial 16S rRNA genes show diversified sulfate-reducing communities within and above the sulfate-methane interface. Their phylogenetic profiles and occurrence patterns are not linked to ANME-1b populations, indicating that electron donors other than methane, perhaps petroleum-derived hydrocarbons, drive sulfate reduction. The archaeal component of anaerobic oxidation of methane is comprised of an active population of mainly ANME-1b in this hypersaline sediment.  相似文献   

17.
甲烷厌氧氧化作用是减少海洋底泥甲烷释放的重要生物地球化学过程,然而在陆地生态系统中甲烷厌氧氧化作用及其功能菌群的生态功能仍然不确定。对甲烷厌氧氧化菌多样性的研究可为减少甲烷排放提供重要科学依据。与传统的分离培养方法比较,分子检测方法是一种更为快速和高效的研究手段,可直接和全面的反映参与甲烷厌氧氧化作用的功能微生物。以DNA分子标记物为研究对象,重点探讨三类主要的分子标记基因,即16S rRNA,mcr A和pmo A,所采用的相关探针和引物信息,同时从定性和定量两个角度综述土壤甲烷厌氧氧化菌的多样性研究的主要进展,最后提出厌氧甲烷氧化菌多样性研究中存在的一些问题和相应的解决思路。  相似文献   

18.
Diversity and Distribution of Methanotrophic Archaea at Cold Seeps   总被引:8,自引:2,他引:6       下载免费PDF全文
In this study we investigated by using 16S rRNA-based methods the distribution and biomass of archaea in samples from (i) sediments above outcropping methane hydrate at Hydrate Ridge (Cascadia margin off Oregon) and (ii) massive microbial mats enclosing carbonate reefs (Crimea area, Black Sea). The archaeal diversity was low in both locations; there were only four (Hydrate Ridge) and five (Black Sea) different phylogenetic clusters of sequences, most of which belonged to the methanotrophic archaea (ANME). ANME group 2 (ANME-2) sequences were the most abundant and diverse sequences at Hydrate Ridge, whereas ANME-1 sequences dominated the Black Sea mats. Other seep-specific sequences belonged to the newly defined group ANME-3 (related to Methanococcoides spp.) and to the Crenarchaeota of marine benthic group B. Quantitative analysis of the samples by fluorescence in situ hybridization (FISH) showed that ANME-1 and ANME-2 co-occurred at the cold seep sites investigated. At Hydrate Ridge the surface sediments were dominated by aggregates consisting of ANME-2 and members of the Desulfosarcina-Desulfococcus branch (DSS) (ANME-2/DSS aggregates), which accounted for >90% of the total cell biomass. The numbers of ANME-1 cells increased strongly with depth; these cells accounted 1% of all single cells at the surface and more than 30% of all single cells (5% of the total cells) in 7- to 10-cm sediment horizons that were directly above layers of gas hydrate. In the Black Sea microbial mats ANME-1 accounted for about 50% of all cells. ANME-2/DSS aggregates occurred in microenvironments within the mat but accounted for only 1% of the total cells. FISH probes for the ANME-2a and ANME-2c subclusters were designed based on a comparative 16S rRNA analysis. In Hydrate Ridge sediments ANME-2a/DSS and ANME-2c/DSS aggregates differed significantly in morphology and abundance. The relative abundance values for these subgroups were remarkably different at Beggiatoa sites (80% ANME-2a, 20% ANME-2c) and Calyptogena sites (20% ANME-2a, 80% ANME-2c), indicating that there was preferential selection of the groups in the two habitats. These variations in the distribution, diversity, and morphology of methanotrophic consortia are discussed with respect to the presence of microbial ecotypes, niche formation, and biogeography.  相似文献   

19.
The deep anoxic shelf of the northwestern Black Sea has numerous gas seeps, which are populated by methanotrophic microbial mats in and above the seafloor. Above the seafloor, the mats can form tall reef-like structures composed of porous carbonate and microbial biomass. Here, we investigated the spatial patterns of CH4 and CO2 assimilation in relation to the distribution of ANME groups and their associated bacteria in mat samples obtained from the surface of a large reef structure. A combination of different methods, including radiotracer incubation, beta microimaging, secondary ion mass spectrometry, and catalyzed reporter deposition fluorescence in situ hybridization, was applied to sections of mat obtained from the large reef structure to locate hot spots of methanotrophy and to identify the responsible microbial consortia. In addition, CO2 reduction to methane was investigated in the presence or absence of methane, sulfate, and hydrogen. The mat had an average δ13C carbon isotopic signature of −67.1‰, indicating that methane was the main carbon source. Regions dominated by ANME-1 had isotope signatures that were significantly heavier (−66.4‰ ± 3.9 ‰ [mean ± standard deviation; n = 7]) than those of the more central regions dominated by ANME-2 (−72.9‰ ± 2.2 ‰; n = 7). Incorporation of 14C from radiolabeled CH4 or CO2 revealed one hot spot for methanotrophy and CO2 fixation close to the surface of the mat and a low assimilation efficiency (1 to 2% of methane oxidized). Replicate incubations of the mat with 14CH4 or 14CO2 revealed that there was interconversion of CH4 and CO2. The level of CO2 reduction was about 10% of the level of anaerobic oxidation of methane. However, since considerable methane formation was observed only in the presence of methane and sulfate, the process appeared to be a rereaction of anaerobic oxidation of methane rather than net methanogenesis.  相似文献   

20.
Uncultured archaeal anaerobic methanotrophs (ANMEs) are known to operate the anaerobic oxidation of methane process, an important sink for the greenhouse gas methane in natural environments. In this study, we designed 16S rRNA gene-specific primers for each of the phylogenetic groups of ANMEs (ANME-1, Guaymas Basin hydrothermal sediment clones group within the ANME-1, ANME-2a, ANME-2b, ANME-2c and ANME-3) based on previously reported sequences. The newly designed primers were used for the detection of the various groups of ANMEs in the sulphate-limited anaerobic environmental samples, i.e. methanogenic sludges, rice field soils, lotus field sediments and natural gas fields. The ANME 16S rRNA gene sequences were detected only in a natural gas field sample among the environments examined in this study and were of the ANME-1 and -2c groups. In addition, the quantitative real-time PCR analysis using the designed primers showed that abundances of ANME-1 and -2c were estimated to be <0.02% of the total prokaryotic 16S rRNA gene community. The newly designed ANME group-specific primers in this study may be useful to survey the distribution and quantitative determination of ANMEs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号