首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A nodule-shaped microbial mat was found subsurface in sediments of a gas seep in the anoxic Black Sea. This mat was dominated by ANME-1 archaea and consumed methane and sulfate simultaneously. We propose that such subsurface mats represent the initial stage of previously investigated microbial reefs.  相似文献   

2.

In this study, the distribution, morphology and relative abundance of Sulfate Reducing Bacterial (SRB) and Methanogenic Archaeal (MA) populations in the Black Sea sediments were investigated by using in situ hybridization with fluorescently labeled rRNA-targeted oligonucleotide probes. Results were discussed with respect to the characteristics of sampling points. MA and SRB showed a great diversity in all sediment samples. Higher abundance of MA (20–30%) and SRB (30–35%) populations were observed within the sediments from deeper parts of the Black Sea than the shallower parts (10–11% MA and 13–14% SRB). Desulfobotulus, Desulfosarcina and Desulfococcus groups were the most commonly detected SRB groups in the Black Sea sediments. Relative percentage of these SRB groups within sediments from deeper parts of the Black Sea was in a range of 17–21% whereas that of was in a range of 4–5% within the sediments from the shallower parts. Order Methanococcales were the dominant methanogenic group in all samples. Relative percentages of order Methanococcales were in a range of 8–12% and 4–5% within sediments from deeper parts and the coastal parts of the Black Sea, respectively.  相似文献   

3.
Gal'chenko  V. F.  Lein  A. Yu.  Ivanov  M. V. 《Microbiology》2004,73(2):211-223
The methane content in the bottom sediments and water column of the Black Sea was determined using various methods of desorption and analysis of gases and various methods of calculating their concentrations. The head-space method with the use of salting out and calculation by an internal standard proved to be the most accurate procedure for the analysis of methane concentration in bottom sediments. The methane content in bottom sediments increased downward along the sediment thickness. In the upper 50–70 cm of shelf sediments, two minimums of methane concentration were revealed; in deep-sea sediments, only one minimum was recorded (in the 20–50 cm horizons). In the water column, methane concentrations slowly grew from the surface to a depth of 150–200 m and abruptly increased to a depth of 700–1200 m, remaining virtually constant in underlying layers. In certain deep-sea regions, peaks of methane content in the 1000–1200 m horizons of the water column were revealed, which were most probably due to local influx of abyssal waters enriched with this gas.  相似文献   

4.
Diffusive gas transport at high water contents and physiological water stress at low water contents limited atmospheric methane consumption rates during experimental manipulations of soil water content and water potential. Maximum rates of atmospheric methane consumption occurred at a soil water content of 25% (grams per gram [dry weight]) and a water potential of about -0.2 MPa. In contrast, uptake rates were highest at a water content of 38% and a water potential of -0.03 MPa when methane was initially present at 200 ppm. Uptake rates of atmospheric and elevated methane decreased when water potentials were reduced by adding either ionic or nonionic solutes to soils with a fixed water content. Uptake rates during these manipulations were lower when sodium chloride or potassium chloride was used to adjust water potential rather than sucrose. The response of methane consumption by soils to water potential was somewhat less pronounced than the response of methanotrophic cultures (e.g., Methylosinus trichosporium OB3b, Methylomonas rubra [= M. methanica], an isolate from a freshwater peat, and an isolate from an intertidal marine mudflat). However, unlike soils, methanotrophic cultures exhibited a stronger adverse response to nonionic solutes than to sodium chloride.  相似文献   

5.
We determined the total and dissolved extracellular enzymatic activity (EEA) of α-glucosidase and β-glucosidase (AGase and BGase), alkaline phosphatase (APase) and leucine aminopeptidase (LAPase) activities in the epi-, meso- and bathypelagic waters of the subtropical Northeast Atlantic. EEA was also determined in treatments in which bacterial EEA was inhibited by erythromycin. Additionally, EEA decay experiments were performed with surface and deep waters to determine EEA lifetimes in both water masses. The proportion of dissolved to total EEA (66–89 %, 44–88 %, 57–82 % and 86–100 % for AGase, BGase, APase and LAPase, respectively) was generally higher than the cell-associated (i.e., particulate) EEA. The percentage of dissolved to total EEA was inversely proportional to the percentage of erythromycin-inhibited to total EEA. Since erythromycin-inhibited plus dissolved EEA equaled total EEA, this tentatively suggests that cell-associated EEA in the open oceanic water column is almost exclusively of bacterial origin. The decay constants of dissolved EEA were in the range of 0.002–0.048 h?1 depending on the type of extracellular enzyme, temperature and depth in the water column. Although dissolved EEA can have different origins, the major contribution of Bacteria to cell-associated EEA and the long life-time of dissolved EEA suggest that Bacteria—and not mesophilic Archaea—are essentially the main producers of EEA in the open subtropical Northeast Atlantic down to bathypelagic layers.  相似文献   

6.
The deep anoxic shelf of the northwestern Black Sea has numerous gas seeps, which are populated by methanotrophic microbial mats in and above the seafloor. Above the seafloor, the mats can form tall reef-like structures composed of porous carbonate and microbial biomass. Here, we investigated the spatial patterns of CH4 and CO2 assimilation in relation to the distribution of ANME groups and their associated bacteria in mat samples obtained from the surface of a large reef structure. A combination of different methods, including radiotracer incubation, beta microimaging, secondary ion mass spectrometry, and catalyzed reporter deposition fluorescence in situ hybridization, was applied to sections of mat obtained from the large reef structure to locate hot spots of methanotrophy and to identify the responsible microbial consortia. In addition, CO2 reduction to methane was investigated in the presence or absence of methane, sulfate, and hydrogen. The mat had an average δ13C carbon isotopic signature of −67.1‰, indicating that methane was the main carbon source. Regions dominated by ANME-1 had isotope signatures that were significantly heavier (−66.4‰ ± 3.9 ‰ [mean ± standard deviation; n = 7]) than those of the more central regions dominated by ANME-2 (−72.9‰ ± 2.2 ‰; n = 7). Incorporation of 14C from radiolabeled CH4 or CO2 revealed one hot spot for methanotrophy and CO2 fixation close to the surface of the mat and a low assimilation efficiency (1 to 2% of methane oxidized). Replicate incubations of the mat with 14CH4 or 14CO2 revealed that there was interconversion of CH4 and CO2. The level of CO2 reduction was about 10% of the level of anaerobic oxidation of methane. However, since considerable methane formation was observed only in the presence of methane and sulfate, the process appeared to be a rereaction of anaerobic oxidation of methane rather than net methanogenesis.  相似文献   

7.
Saralov  A. I. 《Microbiology》2019,88(4):379-401
Microbiology - Extremophilic prokaryotes, inhabitants of hot, cold, acidic, alkaline, saline, and deep-sea ecosystems, are classified as mono- and polyextremophilic or extreme-tolerant. Under...  相似文献   

8.
One year after impoundment in January 1994, methanotrophic bacteria in Petit Saut Reservoir (French Guiana) were active at the oxic-anoxic interface. This activity was revealed by the sudden extinction of diffusive methane emission (600 metric tons of CH4 · day−1 for the whole lake surface area, i.e., 360 km2). Lifting of inhibition was suspected. After reviewing the potential inhibitors of this physiological guild (O2, NH4+, sulfides) and considering the similarities with nitrifiers, we suggest that sunlight influenced the methanotrophic bacteria. On the basis of phospholipid analysis, only a type II methanotrophic community was identified in the lake. Both growth and methanotrophic activity of an enriched culture, obtained in the laboratory, were largely inhibited by illumination over 150 microeinsteins · m−2 · s−1. These results were confirmed on a pure culture of Methylosinus trichosporium OB3B. In situ conditions showed that water transparency was quite stable in 1994 and 1995 and that the oxycline moved steadily deeper until January 1995. Considering the mean illumination profile during this period, we showed that removal of methanotrophic growth inhibition could only occur below a 2-m depth. The oxycline reached this level in October 1994, allowing methanotrophic bacteria to develop and to consume the entire methane emission 4 months later.  相似文献   

9.
10.
Samples from diverse upland soils that oxidize atmospheric methane were characterized with regard to methane oxidation activity and the community composition of methanotrophic bacteria (MB). MB were identified on the basis of the detection and comparative sequence analysis of the pmoA gene, which encodes a subunit of particulate methane monooxygenase. MB commonly detected in soils were closely related to Methylocaldum spp., Methylosinus spp., Methylocystis spp., or the “forest sequence cluster” (USC α), which has previously been detected in upland soils and is related to pmoA sequences of type II MB (Alphaproteobacteria). As well, a novel group of sequences distantly related (<75% derived amino acid identity) to those of known type I MB (Gammaproteobacteria) was often detected. This novel “upland soil cluster γ” (USC γ) was significantly more likely to be detected in soils with pH values of greater than 6.0 than in more acidic soils. To identify active MB, four selected soils were incubated with 13CH4 at low mixing ratios (<50 ppm of volume), and extracted methylated phospholipid fatty acids (PLFAs) were analyzed by gas chromatography-online combustion isotope ratio mass spectrometry. Incorporation of 13C into PLFAs characteristic for methanotrophic Gammaproteobacteria was observed in all soils in which USC γ sequences were detected, suggesting that the bacteria possessing these sequences were active methanotrophs. A pattern of labeled PLFAs typical for methanotrophic Alphaproteobacteria was obtained for a sample in which only USC α sequences were detected. The data indicate that different MB are present and active in different soils that oxidize atmospheric methane.  相似文献   

11.
Tourova  T. P.  Kolganova  T. V.  Kuznetsov  B. B.  Pimenov  N. V. 《Microbiology》2002,71(2):196-201
With the use of molecular ecology methods, the archaeal component of microbial mats on coral-like structures associated with methane seeps occurring at a depth of about 200 m in the Black Sea was investigated without the isolation of pure cultures. Using archaea-specific 16S rDNA–targeted oligonucleotide primes, long fragments of genes were amplified, cloned, and sequenced and their phylogenetic analysis was carried out. It was shown that archaea in microbial mats on coral-like structures are represented by two dominant phylotypes that belong to the kingdoms Crenarchaeota and Euryarchaeota and are not specifically related to any described archaeal species. The possible role of the revealed archaea in the process of anaerobic methane oxidation is discussed.  相似文献   

12.
In the northwestern Black Sea, methane oxidation rates reveal that above shallow and deep gas seeps methane is removed from the water column as efficiently as it is at sites located off seeps. Hence, seeps should not have a significant impact on the estimated annual flux of approximately 4.1 x 10(9) mol methane to the atmosphere [W. S. Reeburgh, B. B. Ward, S. C. Wahlen, K. A. Sandbeck, K. A. Kilatrick, and L. J. Kerkhof, Deep-Sea Res. 38(Suppl. 2):S1189-S1210, 1991]. Both the stable carbon isotopic composition of dissolved methane and the microbial community structure analyzed by fluorescent in situ hybridization provide strong evidence that microbially mediated methane oxidation occurs. At the shelf, strong isotope fractionation was observed above high-intensity seeps. This effect was attributed to bacterial type I and II methanotrophs, which on average accounted for 2.5% of the DAPI (4',6'-diamidino-2-phenylindole)-stained cells in the whole oxic water column. At deep sites, in the oxic-anoxic transition zone, strong isotopic fractionation of methane overlapped with an increased abundance of Archaea and Bacteria, indicating that these organisms are involved in the oxidation of methane. In underlying anoxic water, we successfully identified the archaeal methanotrophs ANME-1 and ANME-2, eachof which accounted for 3 to 4% of the total cell counts. ANME-1 and ANME-2 appear as single cells in anoxicwater, compared to the sediment, where they may form cell aggregates with sulfate-reducing bacteria (A. Boetius, K. Ravenschlag, C. J. Schubert, D. Rickert, F. Widdel, A. Giesecke, R. Amann, B. B. J?rgensen, U. Witte, and O. Pfannkuche, Nature 407:623-626, 2000; V. J. Orphan, C. H. House, K.-U. Hinrichs, K. D. McKeegan, and E. F. DeLong, Proc. Natl. Acad. Sci. USA 99:7663-7668, 2002).  相似文献   

13.
14.
15.
16.
Cell size is a key ecological trait of soil microorganisms that determines a wide range of life history attributes, including the efficiency of nutrient acquisition. However, because of the methodological issues associated with determining cell sizes in situ, we have a limited understanding of how cell abundances vary across cell size fractions and whether certain microbial taxa have consistently smaller cells than other taxa. In this study, we extracted cells from three distinct soils and fractionated them into seven size ranges (5 μm to 0.2 μm) by filtration. Cell abundances in each size fraction were determined by direct microscopy, with the taxonomic composition of each size fraction determined by high-throughput sequencing of the 16S rRNA gene. Most of the cells were smaller than cells typically grown in culture, with 59 to 67% of cells <1.2 μm in diameter. Furthermore, each size fraction harbored distinct bacterial and archaeal communities in each of the three soils, and many of the taxa exhibited distinct size distribution patterns, with the smaller size fractions having higher relative abundances of taxa that are rare or poorly characterized (including Acidobacteria, Gemmatimonadetes, Crenarchaeota, Verrucomicrobia, and Elusimicrobia). In general, there was a direct relationship between average cell size and culturability, with those soil taxa that are poorly represented in culture collections tending to be smaller. Size fractionation not only provides important insight into the life history strategies of soil microbial taxa but also is a useful tool to enable more focused investigations into those taxa that remain poorly characterized.  相似文献   

17.
Nowadays, allergic disorders have become one of the most important social problems in the world. This can be related to the advent of new allergenic agents in the environment, as well as an increasing density of human contact with known allergens, including various proteins. Thus, the development of computer programs designed for the prediction of allergenic properties of proteins becomes one of the urgent tasks of modern bioinformatics. Previously we developed a web accessible Allpred Program (http://www-bionet.sscc.ru/ psd/cgi-bin/programs/Allpred/allpred.cgi) that allows users to assess the allergenicity of proteins by taking into account the characteristics of their spatial structure. In this paper, using AllPred, we predicted the allergenicity of proteins from 462 archaea and bacteria species for which a complete genome was available. The segregation of considered proteins on archaea and bacteria has shown that allergens are predicted more often among archaea than among bacteria. The division of these proteins into groups according to their intracellular localization has revealed that the majority of allergenic proteins were among the secreted proteins. The application of methods for predicting the level of gene expression of microorganisms based on DNA sequence analysis showed a statistically significant relationship between the expression level of the proteins and their allergenicity. This analysis has revealed that potentially allergenic proteins were more common among highly expressed proteins. Sorting microorganisms into the pathogenic and nonpathogenic groups has shown that pathogens can potentially be more allergenic because of a statistically significant greater number of allergens predicted among their proteins.  相似文献   

18.
Sulfidic, anoxic sediments of the moderately hypersaline Salton Sea contain gradients in salinity and carbon that potentially structure the sedimentary microbial community. We investigated the abundance, community structure, and diversity of Bacteria and Archaea along these gradients to further distinguish the ecologies of these domains outside their established physiological range. Quantitative PCR was used to enumerate 16S rRNA gene abundances of Bacteria, Archaea, and Crenarchaeota. Community structure and diversity were evaluated by terminal restriction fragment length polymorphism (T-RFLP), quantitative analysis of gene (16S rRNA) frequencies of dominant microorganisms, and cloning and sequencing of 16S rRNA. Archaea were numerically dominant at all depths and exhibited a lesser response to environmental gradients than that of Bacteria. The relative abundance of Crenarchaeota was low (0.4 to 22%) at all depths but increased with decreased carbon content and increased salinity. Salinity structured the bacterial community but exerted no significant control on archaeal community structure, which was weakly correlated with total carbon. Partial sequencing of archaeal 16S rRNA genes retrieved from three sediment depths revealed diverse communities of Euryarchaeota and Crenarchaeota, many of which were affiliated with groups previously described from marine sediments. The abundance of these groups across all depths suggests that many putative marine archaeal groups can tolerate elevated salinity (5.0 to 11.8% [wt/vol]) and persist under the anaerobic conditions present in Salton Sea sediments. The differential response of archaeal and bacterial communities to salinity and carbon patterns is consistent with the hypothesis that adaptations to energy stress and availability distinguish the ecologies of these domains.The vast majority of cultured Archaea isolates are characterized as extremophiles, which thrive under environmental extremes of temperature, pH, salinity, and oxygen availability. Unlike Bacteria, these organisms are well defined by select physiologies or catabolic activities. Cultivated halophilic archaea are obligate aerobes, and with a few exceptions (58), most 16S rRNA gene sequences affiliated with this physiological group have been recovered primarily from environments with oxygen present. Thermophilic archaea, many of which utilize hydrogen-based metabolisms, have temperature requirements that preclude their survival and growth in more moderate environments. Other archaeal physiological groups include acidophiles, which thrive in acidic and mostly high-temperature environments, the obligate anaerobic methanogens, which are capable of competing with Bacteria when more energetically favorable electron acceptors are not available (i.e., sulfate), and methane-oxidizing archaea, which require methane for energy production. Recent work on several Crenarchaeota isolates points to nitrification as their primary energy metabolism, but these organisms have been detected in cold, predominantly aerobic environments, such as open ocean waters and soil (47), and in hyperthermophilic environments (24).Several archaeal groups identified using only 16S rRNA genes, for which no current isolates exist, have been detected in anaerobic sediments of the marine subsurface (6), estuaries (42), freshwater (46), and salt lakes (29). While their physiology and catabolism remain a source of speculation, the environmental distribution patterns of these mesophilic, presumably anaerobic, groups seemingly exclude the physiological and catabolic types outlined above. That is, the persistence of diverse archaeal populations in anoxic sediments at moderate temperature and salinity and at circumneutral pH with only trace levels of methane strongly suggests that alternative metabolic or physiological activities must characterize these populations.Saline lakes are ubiquitous and can be found on all continents. Although many saline lakes are labeled “extreme” environments, microbial diversity within their sediments is often equivalent to that reported for studies of freshwater and marine systems (28). Most studies of the microbial ecology within saline lakes have focused on gradients within the water column, with very few studies on patterns within the sediments. Specifically, these studies have examined how changes in water column salinity lead to shifts in microbial productivity and diversity (8). However, particle-associated microbial communities are known to differ fundamentally from water column or free-living populations (1, 18). These observed differences could be explained by the type and strength of environmental gradients that microbial communities in sediments experience, as opposed to those encountered by pelagic communities.Sediments contain strong environmental gradients, such as time (e.g., sediment age at depth), nutrient and carbon availability, and the dominant terminal electron-accepting process (TEAP) resulting from the sequential use of available oxidants by the microbial community (41). These gradients can lead to changes in the dominant microbial groups (i.e., a shift from sulfate reducers to methanogens with depth and age). Many saline lakes are highly productive and shallow and experience large fluctuations in water level due to climatic changes or to changes in inflows due to urban and agricultural activities. Changes in lake level can lead to dramatic shifts in mixing regimens, nutrient cycling, and water chemistry. Historic fluctuations in water column salinity are often recorded within the sediments in the form of evaporite deposits, which may act as additional sources of ionic loading of the water column (62). These sedimentary salinity gradients may modulate the metabolic activity of some microbial groups. For example, Oren (44) proposed bioenergetic constraints as a possible explanation for the reduced activity or absence of some microbial groups within high-salinity environments. Thus, saline lake sediments are excellent natural laboratories in which to study changes and adaptations of microbial communities due to large-scale changes in environmental gradients.The Salton Sea is a large (980 km2), eutrophic, moderately hypersaline (48 to 50 g liter−1), terminal lake located 69 m below sea level in the Salton Basin, CA. Several large lakes have formed in the Salton Basin over geologic history, the most recent of which was Lake Cahuilla ca. 300 years ago (7). The current lake was unintentionally created in 1905-1907, when the Colorado River flooded the Salton Basin for a period of 16 months. Profundal sediments are highly sulfidic, and sulfate reduction is suspected to be the dominant TEAP within these sediments (54). Based on elemental analysis (51) and 137Cs activity (37) of sediment layers, a depth of ∼22 cm marks the point when flooding of the Salton Basin occurred. Sediment above this depth represents the ca. 102 years of historical change within the Salton Sea, including a shift from a water column salinity of 35 g liter−1 to the hypersaline conditions that currently exist. Sediments below this depth consist of low-carbon, gypsum-rich evaporite deposits that were present on the older dry lake bed prior to the formation of the current lake. A previous study reported several strong geochemical gradients within pore water across this relatively small depth range (62).In this work, a suite of cultivation-independent techniques and geochemical analyses was utilized to correlate shifts in abundance, community structure, and diversity of Archaea and Bacteria in Salton Sea sediments with changes in environmental gradients. Large differences in abundance and community structure patterns of Archaea and Bacteria were found along the gradients. In addition, the majority of archaeal sequences retrieved were affiliated with previously described but as yet uncultivated groups identified from various marine sedimentary environments. This indicates that these groups are able to tolerate the higher salinity and anaerobic conditions characteristic of Salton Sea sediments. Fundamental differences between the metabolic capacities and ecologies of Archaea and Bacteria are discussed to explain these patterns.  相似文献   

19.
20.
Many biologically active natural products have been isolated from Phakellia fusca, an indigenous sponge in the South China Sea; however, the microbial symbionts of Phakellia fusca remain unknown. The present investigations on sponge microbial community are mainly based on qualitative analysis, while quantitative analysis, e.g., relative abundance, is rarely carried out, and little is known about the roles of microbial symbionts. In this study, the community structure and relative abundance of bacteria, actinobacteria, and archaea associated with Phakellia fusca were revealed by 16S rRNA gene library-based sequencing and quantitative real time PCR (qRT-PCR). The ammonia-oxidizing populations were investigated based on amoA gene and anammox-specific 16S rRNA gene libraries. As a result, it was found that bacterial symbionts of sponge Phakellia fusca consist of Proteobacteria including Gamma-, Alpha-, and Delta-proteobacteria, Cyanobacteria with Gamma-proteobacteria as the predominant components. In particular, the diversity of actinobacterial symbionts in Phakellia fusca is high, which is composed of Corynebacterineae, Acidimicrobidae, Frankineae, Micrococcineae, and Streptosporangineae. All the observed archaea in sponge Phakellia fusca belong to Crenarchaeota, and the detected ammonia-oxidizing populations are ammonia-oxidizing archaea, suggesting the nitrification function of sponge archaeal symbionts. According to qRT-PCR analysis, bacterial symbionts dominated the microbial community, while archaea represented the second predominant symbionts, followed by actinobacteria. The revealed diverse prokaryotic symbionts of Phakellia fusca are valuable for the understanding and in-depth utilization of Phakellia fusca microbial symbionts. This study extends our knowledge of the community, especially the relative abundance of microbial symbionts in sponges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号