首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four recombinant plasmid clones (pPS305, pPS308, pPS317, and pPS319) coding for Escherichia coli ribonucleotide reductase have been characterized in vivo and in vitro. Each clone carried a different missense mutation affecting the B1 subunit. Measurements were made of deoxyribonucleoside triphosphate pools. Cells carrying the wild-type plasmid, pPS2, overproduced ribonucleotide reductase 10 to 20 times. As a consequence of this elevated enzyme level, the deoxyribonucleotide pools were approximately three times higher. All four mutant clones showed disturbed deoxyribonucleotide pools. The in vitro studies involved chromatography on affinity media, measurements of enzyme activity and allosteric regulation with a variety of substrates and effector molecules, and direct photoaffinity labeling in the presence of dTTP. Clones pPS305 and pPS308 were shown to code for catalytically defective enzymes, whereas clones pPS317 and pPS319 were shown to code for allosterically altered enzymes. The characterized missense mutations can thus be localized to areas involved in regulation of the substrate specificity or to the active site of protein B1. The alteration of the deoxyribonucleotide pools found in cells containing the allosterically defective clones pPS317 and pPS319 clearly demonstrated in vivo significance for the allosteric control of protein B1 in E. coli cells.  相似文献   

2.
3.
The small subunit of iron-dependent ribonucleotide reductases contains a stable organic free radical, which is essential for enzyme activity and which is localized to a tyrosine residue. Tyrosine-122 in the B2 subunit of Escherichia coli ribonucleotide reductase has been changed into a phenylalanine. The mutation was introduced with oligonucleotide-directed mutagenesis in an M13 recombinant and verified by DNA sequencing. Purified native and mutant B2 protein were found to have the same size, iron content and iron-related absorption spectrum. The sole difference observed is that the mutant protein lacks tyrosyl radical and enzymatic activity. These results identify Tyr122 of E. coli protein B2 as the tyrosyl radical residue. An expression vector was constructed for manipulation and expression of ribonucleotide reductase subunits. It contains the entire nrd operon with its own promoter in a 2.3-kb fragment from pBR322. Both the B1 and the B2 subunits were expressed at a 25-35 times higher level as compared to the host strain.  相似文献   

4.
Recombinant plasmids containing all or part of the genetic region of Escherichia coli coding for the two subunits of ribonucleoside diphosphate reductase (proteins B1 and B2) were constructed with the aid of the multicopy plasmid pBR322. Two of these plasmids (pPS1 and pPS2) appeared to carry both a regulator and the complete structural information for the enzyme and, after transformation of E. coli, directed a 10- to 20-fold overproduction of both proteins B1 and B2. The other plasmids (pPS101 and pPS201) carried structural information for only protein B2. Cells carrying pPS1 and pPS2 showed a 5- to 500-fold increased resistance against the drug hydroxyurea. This establishes that in E. coli the inhibition of deoxyribonucleic acid synthesis by hydroxyurea is fully explained by its action on ribonucleotide reductase.  相似文献   

5.
We describe the isolation and partial characterization of a mouse L-cell line which is resistant to normally highly cytotoxic concentrations of hydroxyurea. A detailed analysis of the target enzyme ribonucleotide reductase in both wild-type and hydroxyurea-resistant enzyme preparations suggests that the drug-resistant cells form a ribonucleotide reductase enzyme which contains a structural alteration, rendering it less sensitive to inhibition by hydroxyurea. K1 values for hydroxyurea inhibition of ribonucleotide reduction in enzyme preparations from hydroxyurea-resistant cells were significantly higher than corresponding values from preparations from wild-type cells. The Km for CDP reduction in enzyme preparations of drug-resistant cells was approximately threefold higher than the corresponding parental wild-type value. In addition, in vivo enzyme assays detected a major difference between the temperature profiles of ribonucleotide reduction in nucleotide-permeable drug-resistant and wild-type cells. When levels of ribonucleotide reductase activity were measured in vivo, it was found that the drug-resistant cells contained approximately 3 times the wild-type level of CDP reductase activity and twice wild-type level of GDP reductase activity. This combination of enhanced enzyme levels plus an altered sensitivity to drug inhibition can easily account for the drug-resistance phenotype. The properties of these hydroxyurea-resistant cells indicate that they will be useful for genetic and biochemical studies.This work was supported by the N.S.E.R.C. of Canada and the Muscular Dystrophy Association of Canada through research funds (J. A. W.) and by the N.R.C. of Canada through a graduate scholarship (B. A. K.).  相似文献   

6.
We investigated deoxyribonucleoside triphosphate metabolism in S49 mouse T-lymphoma cells synchronized in different phases of the cell cycle. S49 wild-type cultures enriched for G1 phase cells by exposure to dibutyryl cyclic AMP (Bt2cAMP) for 24 h had lower dCTP and dTTP pools but equivalent or increased pools of dATP and dGTP when compared with exponentially growing wild-type cells. Release from Bt2cAMP arrest resulted in a maximum enrichment of S phase occurring 24 h after removal of the Bt2cAMP, and was accompanied by an increase in dCTP and dTTP levels that persisted in colcemid-treated (G2/M phase enriched) cultures. Ribonucleotide reductase activity in permeabilized cells was low in G1 arrested cells, increased in S phase enriched cultures and further increased in G2/M enriched cultures. In cell lines heterozygous for mutations in the allosteric binding sites on the M1 subunit of ribonucleotide reductase, the deoxyribonucleotide pools in S phase enriched cultures were larger than in wild-type S49 cells, suggesting that feedback inhibition of ribonucleotide reductase is an important mechanism limiting the size of deoxyribonucleoside triphosphate pools. The M1 and M2 subunits of ribonucleotide reductase from wild-type S49 cells were identified on two-dimensional polyacrylamide gels, but showed no significant change in intensity during the cell cycle. These data are consistent with allosteric inhibition of ribonucleotide reductase during the G1 phase of the cycle and release of this inhibition during S phase. They suggest that the increase in ribonucleotide reductase activity observed in permeabilized S phase-enriched cultures may not be the result of increased synthesis of either the M1 or M2 subunit of the enzyme.  相似文献   

7.
8.
The reduction of ribonucleotides to deoxyribonucleotides, a rate-limiting step in DNA synthesis, is catalyzed by ribonucleotide reductase. This enzyme is composed of two components, M1 and M2. Recent work has shown that inhibition of ribonucleotide reductase by the antitumor drug hydroxyurea leads to a destabilized iron centre in protein M2. We have examined the relationship between the levels of ferritin, the iron storage protein, and the iron-containing M2 component of ribonucleotide reductase. These studies were carried out with hydroxyurea-sensitive, -resistant, and -revertant cell lines. Hydroxyurea-resistant mouse L cells contained M2 gene amplification and elevated levels of enzyme activity, M2 message, and total cellular M2 protein concentration. Hydroxyurea-revertant cells exhibited a wild-type M2 gene copy number, and approximately wild-type levels of enzyme activity, M2 message, and M2 protein concentration. In addition, we observed that the hydroxyurea-resistant cells possessed elevated levels of L-chain ferritin message and total cellular H-chain ferritin protein when compared to wild-type cells. In contrast, the revertant cell population contained approximately wild-type levels of ferritin mRNA and protein. In keeping with these observations, obtained with mouse L cells, was the finding that hydroxyurea-resistant Chinese hamster ovary cells with increased ribonucleotide reductase activity exhibited elevated expression of both ferritin and M2 genes, which declined in drug-sensitive revertant hamster cell lines with decreased levels of ribonucleotide reductase activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Hydroxyurea at concentrations higher than 10(-2) M induced the recA and sfiA genes of E. coli as well as the lambda prophage by a pathway independent of the recBC genes. In addition, the hydroxyurea-mediated induction of the SOS response is accompanied by a recA-dependent decrease on the cellular ATP pool. The presence of the multicopy plasmid pPS2, harboring the nrdAB genes (encoding the ribonucleoside reductase enzyme), abolished the hydroxyurea-induced expression of the recA gene. These data lead us to suggest that induction of the SOS response by hydroxyurea is due to the blocking of DNA replication by the inhibition of the ribonucleoside reductase complex activity.  相似文献   

10.
11.
Hydroxyurea-resistant S49 T-lymphoma cells have increased ribonucleotide reductase activity and deoxyribonucleoside triphosphate pools when compared with wild-type cultures. If ribonucleotide reductase inhibition is the mechanism by which deoxyadenosine is cytotoxic, then hydroxyurea (HU)-resistant S49 cells might be more resistant to deoxyadenosine toxicity when adenosine deaminase is inhibited than wild-type cells. Five S49 cell lines resistant to varying concentrations of HU were compared with wild-type cells by measuring CDP reductase activity, deoxyribonucleoside triphosphate pools, and deoxyadenosine toxicity. All five cell lines resistant to increasing concentrations of HU exhibited a twofold increase in resistance to deoxyadenosine toxicity when compared to wild type, and the resistance was proportional to the twofold increased pools of dNTPs in these cell lines but was less than the six- to eight fold increase in ribonucleotide reductase activity. In both wild-type and mutant cell lines, deoxyadenosine toxicity was accompanied by the accumulation of deoxyadenosine triphosphate and reduction of the other dNTPs; however, only dGTP greatly diminished. Exogenous addition of deoxycytidine decreased the dATP accumulation by about 20%, but also resulted in increases in the dCTP, dTTP, and dGTP pools. The S49 cells arrested in G1 phase when exposed to dAdo, although hydroxyurea-resistant cells required higher dAdo concentrations to elicit G1-phase arrest than wild-type cells. Deoxycytidine prevented dAdo-induced G1 arrest in all cell types. In summary, these data support the hypothesis that deoxyadenosine-induced dATP accumulation results in inhibition of ribonucleotide reductase and that this may be the mechanism for both cell cycle arrest and cytotoxicity in S49 T-lymphoma cells.  相似文献   

12.
Phosphonoformic acid (PFA) and its congener phosphonoacetic acid (PAA) are inhibitors of viral replication whose mechanism of action appears to be the inhibition of viral DNA polymerase. These drugs inhibit mammalian DNA polymerase to a lesser extent. We sought to characterize the effects of phonoformic acid on mammalian cells by examining mutants of S49 cells (a mouse T-lymphoma line), which were selected by virtue of their resistance to phosphonoformic acid. The 11 mutant lines that were resistant to growth inhibition by 3 mM PFA had a range of growth rates, cell cycle distribution abnormalities, and resistance to the inhibitory effects of thymidine, acycloguanosine (acyclovir), aphidicolin, deoxyadenosine, and novobiocin. Most mutant lines had pools of ribonucleoside triphosphates and deoxyribonucleoside triphosphates similar to those of wild-type S49 cells. However, one line (PFA 3-9) had a greatly elevated dCTP pool. When this mutant line was further characterized, no apparent defect in DNA polymerase alpha activity was seen, but an increased ribonucleotide reductase activity, as assayed by CDP reduction in permeabilized cells, was observed. The CDP reductase activity in the PFA 3-9 cells decreased to wild-type control levels, and the CDP reductase activity of wild-type cells was also greatly reduced when PFA (2-3 mM) was added to permeabilized cells during the enzyme assay. These results demonstrate that PFA can directly inhibit ribonucleotide reductase activity in permeabilized cells. In addition, when PFA was added to exponentially growing cultures of either wild-type or PFA 3-9 mutant cells, the drug caused an arrest in S phase of the cell cycle and a decrease in all four deoxyribonucleotide pools, with the most dramatic decrease in the dCTP pools. The reduction in the dCTP pool level could be reversed by addition of exogenous deoxycytidine, but this reversed PFA toxicity only marginally. These observations suggest that PFA is an inhibitor of mammalian ribonucleotide reductase and that partial resistance to PFA can be effected by mutation to increased CDP reductase activity resulting in a large dCTP pool. This mutation results in less than twofold resistance to PFA, suggesting that other sites of inhibition coexist.  相似文献   

13.
The UV-mediated induction of recA and sfiA genes in Escherichia coli cells with distinct levels of dATP has been studied. Low levels of dATP were obtained by using either a temperature-sensitive ribonucleotide (RDP) reductase-deficient (nrdA) mutant or a wild-type strain treated with hydroxyurea. High pools of dATP were achieved by using a plasmid overproducing RDP reductase. The results obtained show that expression of the recA and sfiA genes was inhibited neither in the UV-irradiated nrdA mutant at 42 degrees C nor in the wild-type strain in the presence of hydroxyurea. Likewise, the increase of the dATP pool did not enhance recA and sfiA gene expression after UV irradiation. All these data suggest that the basal level of dATP is not a limiting factor in the process of induction of the SOS system in Escherichia coli.  相似文献   

14.
Mutants of Escherichia coli K-12 deficient in glutaredoxin were isolated and partially characterized. The mutants have detectable but significantly reduced glutaredoxin activity in assays of whole cells made permeable with ether as well as in assays of crude extracts coupled to ribonucleotide reductase. In vivo, the mutants appear to be deficient in both sulfate and ribonucleotide reduction, suggesting that in vivo glutaredoxin is the preferred cofactor for ribonucleotide reductase and adenosine 3'-phosphate 5'-phosphosulfate reductase. Complementation of the mutant phenotype by transformants was used to clone the wild-type glutaredoxin allele. The transformants had a high level of glutaredoxin activity and contained a plasmid with an insert that had a restriction endonuclease pattern identical to that predicted by the DNA sequence for glutaredoxin determined by Hoog et al. (J.-O. Hoog, H. von Bahr-Lindstrom, H. Jornvall, and A. Holmgren, Gene 43:13-21, 1986).  相似文献   

15.
The SRL4 (YPL033C) gene was initially identified by the screening of Saccharomyces cerevisiae genes that play a role in DNA metabolism and/or genome stability using the SOS system of Escherichia coli. In this study, we found that the srl4Delta mutant cells were resistant to the chemicals that inhibit nucleotide metabolism and evidenced higher dNTP levels than were observed in the wild-type cells in the presence of hydroxyurea. The mutant cells also showed a significantly faster growth rate and higher dNTP levels at low temperature (16 degrees C) than were observed in the wild-type cells, whereas we detected no differences in the growth rate at 30 degrees C. Furthermore, srl4Delta was shown to suppress the lethality of mutations of the essential S phase checkpoint genes, RAD53 and LCD1. These results indicate that SRL4 may be involved in the regulation of dNTP production by its function as a negative regulator of ribonucleotide reductase.  相似文献   

16.
Ribonucleotide reductase from Escherichia coli consists of two nonidentical subunits, proteins B1 and B2. The activity of the enzyme in crude extracts prepared from mechanically disrupted bacteria is very low. Enzyme activity is stimulated 5 to 10-fold by addition of an excess of either subunit. Concentrated extracts from cells lysed gently on Cellophane discs (Schaller et al.) contained 10 to 20-fold higher activity than extracts from mechanically disrupted cells. This activity was not further stimulated by either B1 or B2. The system is suitable for complementation tests for the analysis of temperature-sensitive mutants affecting the ribonucleotide reductase system. Concentrated high-speed supernatants from E. coli treated with lysozyme (Wickner et al.) also contained a high ribonucleotide reductase activity, which was stimulated slightly or not at all by addition of B1 and B2. This active form of the enzyme was unstable and could not be purified. The results suggest that the intracellular form of the enzyme consists of a tight complex of proteins B1 and B2, possibly stabilized by other intracellular structures.  相似文献   

17.
The expression of the nrd operon encoding ribonucleotide reductase in Escherichia coli has been shown to be cell cycle regulated. To identify the cis-acting elements required for the cell cycle regulation of the nrd promoter, different 5' deletions as well as site-directed mutations were translationally fused to a lacZ reporter gene. The expression of beta-galactosidase from these nrd-lacZ fusions in single-copy plasmids was determined with synchronously growing cultures obtained by repeated phosphate starvation as well as with exponentially growing cultures by flow cytometry analysis. Although Fis and DnaA, two regulatory proteins that bind at multiple sites on the E. coli chromosome, have been found to regulate the nrd promoter, the results in this study demonstrated that neither Fis nor DnaA was required for nrd cell cycle regulation. A cis-acting upstream AT-rich sequence was found to be required for the cell cycle regulation. This sequence could be replaced by a different sequence that maintained the AT richness. A flow cytometry analysis that combined specific immunofluorescent staining of beta-galactosidase with a DNA-specific stain was developed and employed to study the nrd promoter activity in cells at specific cell cycle positions. The results of the flow cytometry analysis confirmed the results obtained from studies with synchronized cells.  相似文献   

18.
The murine adenocarcinoma cell line TA 3 synthesized nitrite from L-arginine upon stimulation with gamma-interferon (IFN-gamma) associated with tumor necrosis factor (TNF), and/or bacterial lipopolysaccharide (LPS), but not with IFN-gamma, TNF, or LPS added separately. Induction of the NO2(-)-generating activity caused an inhibition of DNA synthesis in TA 3 cells. This inhibition was prevented by the L-arginine analog N omega-nitro-L-arginine, which inhibited under the same conditions nitrite production by TA 3 cells. The TA 3 M2 subclone, selected for enhanced ribonucleotide reductase activity, was found to be less sensitive than the wild phenotype TA 3 WT to the cytostatic activity mediated by the NO2(-)-generating system. Cytosolic preparations from TA 3 M2 cells treated for 24 or 48 h with IFN-gamma, TNF, and LPS exhibited a reduced ribonucleotide reductase activity, compared to untreated control cells. No reduction in ribonucleotide reductase activity was observed when N omega-nitro-L-arginine was added to treated cells. Addition of L-arginine, NADPH, and tetrahydrobiopterin into cytosolic extracts from 24-h treated TA 3 M2 cells triggered the synthesis of metabolic products from the NO2(-)-generating pathway. This resulted in a dramatic inhibition of the residual ribonucleotide reductase activity present in the extracts. The inhibition was reversed by NG-monomethyl-L-arginine, another specific inhibitor of the NO2(-)-generating activity. No L-arginine-dependent inhibition of ribonucleotide reductase activity was observed using extracts from untreated cells that did not express NO2(-)-generating activity. These results demonstrate that, in an acellular preparation, molecules derived from the NO2(-)-generating pathway exert an inhibitory effect on the ribonucleotide reductase enzyme. This negative action might explain the inhibition of DNA synthesis induced in adenocarcinoma cells by the NO2(-)-generating pathway.  相似文献   

19.
Hydroxyurea-resistant Aedes albopictus mosquito cells were selected by incremental exposure of unmutagenized cells to hydroxyurea concentrations ranging from 0.1 to 8 mM. Clonal populations that had become 40-fold more resistant to hydroxyurea than wild-type cells varied in morphology, and their growth rate decreased to a ∼45 h doubling time, relative to an 18 h doubling time in unselected cells. At this level of resistance, the cells remained diploid, with a modal chromosome number of 6. When labelled with 35S[methionine/cysteine], clone HU1062, which grew in the presence of 8 mM hydroxyurea, overproduced a labeled protein with the approximate size of the 45,000 dalton M2 subunit of ribonucleotide reductase. Consistent with this observation, ribonucleotide reductase activity in HU-1062 cells was approximately 10-fold higher than in wild-type control cells. This is the first example of an hydroxyurea-resistant insect cell line. © 1997 Wiley-Liss, Inc.  相似文献   

20.
Metaphase chromosomes purified from a hydroxyurea-resistant Chinese hamster cell line were able to transform recipient wild-type cells to hydroxyurea resistance at a frequency of 10(-6). Approximately 60% of the resulting transformant clones gradually lost hydroxyurea resistance when cultivated for prolonged periods in the absence of drug. One transformant was subjected to serial selection in higher concentrations of hydroxyurea. The five cell lines generated exhibited increasing relative plating efficiency in the presence of the drug and a corresponding elevation in their cellular content of ribonucleotide reductase. The most resistant cell line had a 163-fold increase in relative plating efficiency and a 120-fold increase in enzyme activity when compared with the wild-type cell line. The highly hydroxyurea-resistant cell lines had strong electron paramagnetic resonance signals characteristic of an elevated level of the free radical present in the M2 subunit of ribonucleotide reductase. Two-dimensional electrophoresis of cell-free extracts from one of the resistant cell lines indicated that a 53,000-dalton protein was present in greatly elevated quantities when compared with the wild-type cell line. These data suggest that the hydroxyurea-resistant cell lines may contain an amplification of the gene for the M2 subunit of ribonucleotide reductase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号