首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to bridge the gap between proteins with three-dimensional (3-D) structural information and those without 3-D structures, extensive experimental and computational efforts for structure recognition are being invested. One of the rapid and simple computational approaches for structure recognition makes use of sequence profiles with sensitive profile matching procedures to identify remotely related homologous families. While adopting this approach we used profiles that are generated from structure-based sequence alignment of homologous protein domains of known structures integrated with sequence homologues. We present an assessment of this fast and simple approach. About one year ago, using this approach, we had identified structural homologues for 315 sequence families, which were not known to have any 3-D structural information. The subsequent experimental structure determination for at least one of the members in 110 of 315 sequence families allowed a retrospective assessment of the correctness of structure recognition. We demonstrate that correct folds are detected with an accuracy of 96.4% (106/110). Most (81/106) of the associations are made correctly to the specific structural family. For 23/106, the structure associations are valid at the superfamily level. Thus, profiles of protein families of known structure when used with sensitive profile-based search procedure result in structure association of high confidence. Further assignment at the level of superfamily or family would provide clues to probable functions of new proteins. Importantly, the public availability of these profiles from us could enable one to perform genome wide structure assignment in a local machine in a fast and accurate manner.  相似文献   

2.
Members of a superfamily of proteins could result from divergent evolution of homologues with insignificant similarity in the amino acid sequences. A superfamily relationship is detected commonly after the three-dimensional structures of the proteins are determined using X-ray analysis or NMR. The SUPFAM database described here relates two homologous protein families in a multiple sequence alignment database of either known or unknown structure. The present release (1.1), which is the first version of the SUPFAM database, has been derived by analysing Pfam, which is one of the commonly used databases of multiple sequence alignments of homologous proteins. The first step in establishing SUPFAM is to relate Pfam families with the families in PALI, which is an alignment database of homologous proteins of known structure that is derived largely from SCOP. The second step involves relating Pfam families which could not be associated reliably with a protein superfamily of known structure. The profile matching procedure, IMPALA, has been used in these steps. The first step resulted in identification of 1280 Pfam families (out of 2697, i.e. 47%) which are related, either by close homologous connection to a SCOP family or by distant relationship to a SCOP family, potentially forming new superfamily connections. Using the profiles of 1417 Pfam families with apparently no structural information, an all-against-all comparison involving a sequence-profile match using IMPALA resulted in clustering of 67 homologous protein families of Pfam into 28 potential new superfamilies. Expansion of groups of related proteins of yet unknown structural information, as proposed in SUPFAM, should help in identifying ‘priority proteins’ for structure determination in structural genomics initiatives to expand the coverage of structural information in the protein sequence space. For example, we could assign 858 distinct Pfam domains in 2203 of the gene products in the genome of Mycobacterium tubercolosis. Fifty-one of these Pfam families of unknown structure could be clustered into 17 potentially new superfamilies forming good targets for structural genomics. SUPFAM database can be accessed at http://pauling.mbu.iisc.ernet.in/~supfam.  相似文献   

3.
The sequencing of theMycobacterium tuberculosis (MTB) H37Rv genome has facilitated deeper insights into the biology of MTB, yet the functions of many MTB proteins are unknown. We have used sensitive profile-based search procedures to assign functional and structural domains to infer functions of gene products encoded in MTB. These domain assignments have been made using a compendium of sequence and structural domain families. Functions are predicted for 78% of the encoded gene products. For 69% of these, functions can be inferred by domain assignments. The functions for the rest are deduced from their homology to proteins of known function. Superfamily relationships between families of unknown and known structures have increased structural information by ∼ 11%. Remote similarity detection methods have enabled domain assignments for 1325 ‘hypothetical proteins’. The most populated families in MTB are involved in lipid metabolism, entry and survival of the bacillus in host. Interestingly, for 353 proteins, which we refer to as MTB-specific, no homologues have been identified. Numerous, previously unannotated, hypothetical proteins have been assigned domains and some of these could perhaps be the possible chemotherapeutic targets. MTB-specific proteins might include factors responsible for virulence. Importantly, these assignments could be valuable for experimental endeavors. The detailed results are publicly available at http://hodgkin.mbu.iisc.ernet.in/∼dots. An erratum to this article is available at .  相似文献   

4.
Of the membrane proteins of known structure, we found that a remarkable 67% of the water soluble domains are structurally similar to water soluble proteins of known structure. Moreover, 41% of known water soluble protein structures share a domain with an already known membrane protein structure. We also found that functional residues are frequently conserved between extramembrane domains of membrane and soluble proteins that share structural similarity. These results suggest membrane and soluble proteins readily exchange domains and their attendant functionalities. The exchanges between membrane and soluble proteins are particularly frequent in eukaryotes, indicating that this is an important mechanism for increasing functional complexity. The high level of structural overlap between the two classes of proteins provides an opportunity to employ the extensive information on soluble proteins to illuminate membrane protein structure and function, for which much less is known. To this end, we employed structure guided sequence alignment to elucidate the functions of membrane proteins in the human genome. Our results bridge the gap of fold space between membrane and water soluble proteins and provide a resource for the prediction of membrane protein function. A database of predicted structural and functional relationships for proteins in the human genome is provided at sbi.postech.ac.kr/emdmp.  相似文献   

5.
Domains are the building blocks of all globular proteins, and are units of compact three-dimensional structure as well as evolutionary units. There is a limited repertoire of domain families, so that these domain families are duplicated and combined in different ways to form the set of proteins in a genome. Proteins are gene products. The processes that produce new genes are duplication and recombination as well as gene fusion and fission. We attempt to gain an overview of these processes by studying the structural domains in the proteins of seven genomes from the three kingdoms of life: Eubacteria, Archaea and Eukaryota. We use here the domain and superfamily definitions in Structural Classification of Proteins Database (SCOP) in order to map pairs of adjacent domains in genome sequences in terms of their superfamily combinations. We find 624 out of the 764 superfamilies in SCOP in these genomes, and the 624 families occur in 585 pairwise combinations. Most families are observed in combination with one or two other families, while a few families are very versatile in their combinatorial behaviour. This type of pattern can be described by a scale-free network. Finally, we study domain repeats and we compare the set of the domain combinations in the genomes to those in PDB, and discuss the implications for structural genomics.  相似文献   

6.
Membrane proteins serve as cellular gatekeepers, regulators, and sensors. Prior studies have explored the functional breadth and evolution of proteins and families of particular interest, such as the diversity of transport-associated membrane protein families in prokaryotes and eukaryotes, the composition of integral membrane proteins, and family classification of all human G-protein coupled receptors. However, a comprehensive analysis of the content and evolutionary associations between membrane proteins and families in a diverse set of genomes is lacking. Here, a membrane protein annotation pipeline was developed to define the integral membrane genome and associations between 21,379 proteins from 34 genomes; most, but not all of these proteins belong to 598 defined families. The pipeline was used to provide target input for a structural genomics project that successfully cloned, expressed, and purified 61 of our first 96 selected targets in yeast. Furthermore, the methodology was applied (1) to explore the evolutionary history of the substrate-binding transmembrane domains of the human ABC transporter superfamily, (2) to identify the multidrug resistance-associated membrane proteins in whole genomes, and (3) to identify putative new membrane protein families.  相似文献   

7.
There is a limited repertoire of domain families that are duplicated and combined in different ways to form the set of proteins in a genome. Proteins are gene products, and at the level of genes, duplication, recombination, fusion and fission are the processes that produce new genes. We attempt to gain an overview of these processes by studying the evolutionary units in proteins, domains, in the protein sequences of 40 genomes. The domain and superfamily definitions in the Structural Classification of Proteins Database are used, so that we can view all pairs of adjacent domains in genome sequences in terms of their superfamily combinations. We find 783 out of the 859 superfamilies in SCOP in these genomes, and the 783 families occur in 1307 pairwise combinations. Most families are observed in combination with one or two other families, while a few families are very versatile in their combinatorial behaviour; 209 families do not make combinations with other families. This type of pattern can be described as a scale-free network. We also study the N to C-terminal orientation of domain pairs and domain repeats. The phylogenetic distribution of domain combinations is surveyed, to establish the extent of common and kingdom-specific combinations. Of the kingdom-specific combinations, significantly more combinations consist of families present in all three kingdoms than of families present in one or two kingdoms. Hence, we are led to conclude that recombination between common families, as compared to the invention of new families and recombination among these, has also been a major contribution to the evolution of kingdom-specific and species-specific functions in organisms in all three kingdoms. Finally, we compare the set of the domain combinations in the genomes to those in the RCSB Protein Data Bank, and discuss the implications for structural genomics.  相似文献   

8.

Background  

The kelch motif is an ancient and evolutionarily-widespread sequence motif of 44–56 amino acids in length. It occurs as five to seven repeats that form a β-propeller tertiary structure. Over 28 kelch-repeat proteins have been sequenced and functionally characterised from diverse organisms spanning from viruses, plants and fungi to mammals and it is evident from expressed sequence tag, domain and genome databases that many additional hypothetical proteins contain kelch-repeats. In general, kelch-repeat β-propellers are involved in protein-protein interactions, however the modest sequence identity between kelch motifs, the diversity of domain architectures, and the partial information on this protein family in any single species, all present difficulties to developing a coherent view of the kelch-repeat domain and the kelch-repeat protein superfamily. To understand the complexity of this superfamily of proteins, we have analysed by bioinformatics the complement of kelch-repeat proteins encoded in the human genome and have made comparisons to the kelch-repeat proteins encoded in other sequenced genomes.  相似文献   

9.
This article presents a comprehensive review of large and highly diverse superfamily of nucleotidyltransferase fold proteins by providing a global picture about their evolutionary history, sequence-structure diversity and fulfilled functional roles. Using top-of-the-line homology detection method combined with transitive searches and fold recognition, we revised the realm of these superfamily in numerous databases of catalogued protein families and structures, and identified 10 new families of nucleotidyltransferase fold. These families include hundreds of previously uncharacterized and various poorly annotated proteins such as Fukutin/LICD, NFAT, FAM46, Mab-21 and NRAP. Some of these proteins seem to play novel important roles, not observed before for this superfamily, such as regulation of gene expression or choline incorporation into cell membrane. Importantly, within newly detected families we identified 25 novel superfamily members in human genome. Among these newly assigned members are proteins known to be involved in congenital muscular dystrophy, neurological diseases and retinal pigmentosa what sheds some new light on the molecular background of these genetic disorders. Twelve of new human nucleotidyltransferase fold proteins belong to Mab-21 family known to be involved in organogenesis and development. The determination of specific biological functions of these newly detected proteins remains a challenging task.  相似文献   

10.
Using a data set of aligned protein domain superfamilies of known three-dimensional structure, we compared the location of interdomain interfaces on the tertiary folds between members of distantly related protein domain superfamilies. The data set analyzed is comprised of interdomain interfaces, with domains occurring within a polypeptide chain and those between two polypeptide chains. We observe that, in general, the interfaces between protein domains are formed entirely in different locations on the tertiary folds in such pairs. This variation in the location of interface happens in protein domains involved in a wide range of functions, such as enzymes, adapters, and domains that bind protein ligands, or cofactors. While basic biochemical functionality is preserved at the domain superfamily level, the effect of biochemical function on protein assemblies is different in these protein domains related by superfamily. The divergence between proteins, in most cases, is coupled with domain recruitment, with different modes of interaction with the recruited domain. This is in complete contrast to the observation that in closely related homologous protein domains, almost always the interaction interfaces are topologically equivalent. In a small subset of interacting domains within proteins related by remote homology, we observe that the relative positioning of domains with respect to one another is preserved. Based on the analysis of multidomain proteins of known or unknown structure, we suggest that variation in protein-protein interactions in members within a superfamily could serve as diverging points in otherwise parallel metabolic or signaling pathways. We discuss a few representative cases of diverging pathways involving domains in a superfamily.  相似文献   

11.
Alternative splicing has been recognized as a major mechanism by which protein diversity is increased without significantly increasing genome size in animals and has crucial medical implications, as many alternative splice variants are known to cause diseases. Despite the importance of knowing what structural changes alternative splicing introduces to the encoded proteins for the consideration of its significance, the problem has not been adequately explored. Therefore, we systematically examined the structures of the proteins encoded by the alternative splice variants in the HUGE protein database derived from long (>4 kb) human brain cDNAs. Limiting our analyses to reliable alternative splice junctions, we found alternative splice junctions to have a slight tendency to avoid the interior of SCOP domains and a strong statistically significant tendency to coincide with SCOP domain boundaries. These findings reflect the occurrence of some alternative splicing events that utilize protein structural units as a cassette. However, 50 cases were identified in which SCOP domains are disrupted in the middle by alternative splicing. In six of the cases, insertions are introduced at the molecular surface, presumably affecting protein functions, while in 11 of the cases alternatively spliced variants were found to encode pairs of stable and unstable proteins. The mRNAs encoding such unstable proteins are much less abundant than those encoding stable proteins and tend not to have corresponding mRNAs in non-primate species. We propose that most unstable proteins encoded by alternative splice variants lack normal functions and are an evolutionary dead-end.  相似文献   

12.
Tobi D 《Proteins》2012,80(4):1167-1176
A novel methodology for comparison of protein dynamics is presented. Protein dynamics is calculated using the Gaussian network model and the modes of motion are globally aligned using the dynamic programming algorithm of Needleman and Wunsch, commonly used for sequence alignment. The alignment is fast and can be used to analyze large sets of proteins. The methodology is applied to the four major classes of the SCOP database: "all alpha proteins," "all beta proteins," "alpha and beta proteins," and "alpha/beta proteins". We show that different domains may have similar global dynamics. In addition, we report that the dynamics of "all alpha proteins" domains are less specific to structural variations within a given fold or superfamily compared with the other classes. We report that domain pairs with the most similar and the least similar global dynamics tend to be of similar length. The significance of the methodology is that it suggests a new and efficient way of mapping between the global structural features of protein families/subfamilies and their encoded dynamics.  相似文献   

13.
14.
The use of nucleases as toxins for defense, offense or addiction of selfish elements is widely encountered across all life forms. Using sensitive sequence profile analysis methods, we characterize a novel superfamily (the SUKH superfamily) that unites a diverse group of proteins including Smi1/Knr4, PGs2, FBXO3, SKIP16, Syd, herpesviral US22, IRS1 and TRS1, and their bacterial homologs. Using contextual analysis we present evidence that the bacterial members of this superfamily are potential immunity proteins for a variety of toxin systems that also include the recently characterized contact-dependent inhibition (CDI) systems of proteobacteria. By analyzing the toxin proteins encoded in the neighborhood of the SUKH superfamily we predict that they possess domains belonging to diverse nuclease and nucleic acid deaminase families. These include at least eight distinct types of DNases belonging to HNH/EndoVII- and restriction endonuclease-fold, and RNases of the EndoU-like and colicin E3-like cytotoxic RNases-folds. The N-terminal domains of these toxins indicate that they are extruded by several distinct secretory mechanisms such as the two-partner system (shared with the CDI systems) in proteobacteria, ESAT-6/WXG-like ATP-dependent secretory systems in Gram-positive bacteria and the conventional Sec-dependent system in several bacterial lineages. The hedgehog-intein domain might also release a subset of toxic nuclease domains through auto-proteolytic action. Unlike classical colicin-like nuclease toxins, the overwhelming majority of toxin systems with the SUKH superfamily is chromosomally encoded and appears to have diversified through a recombination process combining different C-terminal nuclease domains to N-terminal secretion-related domains. Across the bacterial superkingdom these systems might participate in discriminating `self' or kin from `non-self' or non-kin strains. Using structural analysis we demonstrate that the SUKH domain possesses a versatile scaffold that can be used to bind a wide range of protein partners. In eukaryotes it appears to have been recruited as an adaptor to regulate modification of proteins by ubiquitination or polyglutamylation. Similarly, another widespread immunity protein from these toxin systems, namely the suppressor of fused (SuFu) superfamily has been recruited for comparable roles in eukaryotes. In animal DNA viruses, such as herpesviruses, poxviruses, iridoviruses and adenoviruses, the ability of the SUKH domain to bind diverse targets has been deployed to counter diverse anti-viral responses by interacting with specific host proteins.  相似文献   

15.
The ever increasing speed of DNA sequencing widens the discrepancy between the number of known gene products, and the knowledge of their function and structure. Proper annotation of protein sequences is therefore crucial if the missing information is to be deduced from sequence‐based similarity comparisons. These comparisons become exceedingly difficult as the pairwise identities drop to very low values. To improve the accuracy of domain identification, we exploit the fact that the three‐dimensional structures of domains are much more conserved than their sequences. Based on structure‐anchored multiple sequence alignments of low identity homologues we constructed 850 structure‐anchored hidden Markov models (saHMMs), each representing one domain family. Since the saHMMs are highly family specific, they can be used to assign a domain to its correct family and clearly distinguish it from domains belonging to other families, even within the same superfamily. This task is not trivial and becomes particularly difficult if the unknown domain is distantly related to the rest of the domain sequences within the family. In a search with full length protein sequences, harbouring at least one domain as defined by the structural classification of proteins database (SCOP), version 1.71, versus the saHMM database based on SCOP version 1.69, we achieve an accuracy of 99.0%. All of the few hits outside the family fall within the correct superfamily. Compared to Pfam_ls HMMs, the saHMMs obtain about 11% higher coverage. A comparison with BLAST and PSI‐BLAST demonstrates that the saHMMs have consistently fewer errors per query at a given coverage. Within our recommended E‐value range, the same is true for a comparison with SUPERFAMILY. Furthermore, we are able to annotate 232 proteins with 530 nonoverlapping domains belonging to 102 different domain families among human proteins labelled “unknown” in the NCBI protein database. Our results demonstrate that the saHMM database represents a versatile and reliable tool for identification of domains in protein sequences. With the aid of saHMMs, homology on the family level can be assigned, even for distantly related sequences. Due to the construction of the saHMMs, the hits they provide are always associated with high quality crystal structures. The saHMM database can be accessed via the FISH server at http://babel.ucmp.umu.se/fish/ . Proteins 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

16.
There is a limited repertoire of domain families in nature that are duplicated and combined in different ways to form the set of proteins in a genome. Most proteins in both prokaryote and eukaryote genomes consist of two or more domains, and we show that the family size distribution of multi-domain protein families follows a power law like that of individual families. Most domain pairs occur in four to six different domain architectures: in isolation and in combinations with different partners. We showed previously that within the set of all pairwise domain combinations, most small and medium-sized families are observed in combination with one or two other families, while a few large families are very versatile and combine with many different partners. Though this may appear to be a stochastic pattern, in which large families have more combination partners by virtue of their size, we establish here that all the domain families with more than three members in genomes are duplicated more frequently than would be expected by chance considering their number of neighbouring domains. This duplication of domain pairs is statistically significant for between one and three quarters of all families with seven or more members. For the majority of pairwise domain combinations, there is no known three-dimensional structure of the two domains together, and we term these novel combinations. Novel domain combinations are interesting and important targets for structural elucidation, as the geometry and interaction between the domains will help understand the function and evolution of multi-domain proteins. Of particular interest are those combinations that occur in the largest number of multi-domain proteins, and several of these frequent novel combinations contain DNA-binding domains.Abbreviations:SCOP: Structural Classification of Proteins database, PDB: Protein DataBank, HMM: hidden Markov model  相似文献   

17.
18.
Iyer LM  Koonin EV  Aravind L 《Proteins》2001,43(2):134-144
With a protein structure comparison, an iterative database search with sequence profiles, and a multiple-alignment analysis, we show that two domains with the helix-grip fold, the star-related lipid-transfer (START) domain of the MLN64 protein and the birch allergen, are homologous. They define a large, previously underappreciated superfamily that we call the START superfamily. In addition to the classical START domains that are primarily involved in eukaryotic signaling mediated by lipid binding and the birch antigen family that consists of plant proteins implicated in stress/pathogen response, the START superfamily includes bacterial polyketide cyclases/aromatases (e.g., TcmN and WhiE VI) and two families of previously uncharacterized proteins. The identification of this domain provides a structural prediction of an important class of enzymes involved in polyketide antibiotic synthesis and allows the prediction of their active site. It is predicted that all START domains contain a similar ligand-binding pocket. Modifications of this pocket determine the ligand-binding specificity and may also be the basis for at least two distinct enzymatic activities, those of a cyclase/aromatase and an RNase. Thus, the START domain superfamily is a rare case of the adaptation of a protein fold with a conserved ligand-binding mode for both a broad variety of catalytic activities and noncatalytic regulatory functions. Proteins 2001;43:134-144.  相似文献   

19.
An efficient algorithm for large-scale detection of protein families   总被引:6,自引:0,他引:6  
Detection of protein families in large databases is one of the principal research objectives in structural and functional genomics. Protein family classification can significantly contribute to the delineation of functional diversity of homologous proteins, the prediction of function based on domain architecture or the presence of sequence motifs as well as comparative genomics, providing valuable evolutionary insights. We present a novel approach called TRIBE-MCL for rapid and accurate clustering of protein sequences into families. The method relies on the Markov cluster (MCL) algorithm for the assignment of proteins into families based on precomputed sequence similarity information. This novel approach does not suffer from the problems that normally hinder other protein sequence clustering algorithms, such as the presence of multi-domain proteins, promiscuous domains and fragmented proteins. The method has been rigorously tested and validated on a number of very large databases, including SwissProt, InterPro, SCOP and the draft human genome. Our results indicate that the method is ideally suited to the rapid and accurate detection of protein families on a large scale. The method has been used to detect and categorise protein families within the draft human genome and the resulting families have been used to annotate a large proportion of human proteins.  相似文献   

20.
Immunoglobulin superfamily proteins in Caenorhabditis elegans   总被引:2,自引:0,他引:2  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号