首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The triple-gene-block (TGB)1 protein of Potato mop-top virus (PMTV) was fused to fluorescent proteins and expressed in epidermal cells of Nicotiana benthamiana under the control of the 35S promoter. TGB1 fluorescence was observed in the cytoplasm, nucleus, and nucleolus and occasionally associated with microtubules. When expressed from a modified virus (PMTV.YFP-TGB1) which formed local lesions but was not competent for systemic movement, yellow fluorescent protein (YFP)-TGB1 labeled plasmodesmata in cells at the leading edge of the lesion and plasmodesmata, microtubules, nuclei, and nucleoli in cells immediately behind the leading edge. Deletion of 84 amino acids from the N-terminus of unlabeled TGB1 within the PMTV genome abolished movement of viral RNA to noninoculated leaves. When the same deletion was introduced into PMTV.YFP-TGB1, labeling of microtubules and nucleoli was abolished. The N-terminal 84 amino acids of TGB1 were fused to green fluorescent protein (GFP) and expressed in epidermal cells where GFP localized strongly to the nucleolus (not seen with unfused GFP), indicating that these amino acids contain a nucleolar localization signal; the fusion protein did not label microtubules. This is the first report of nucleolar and microtubule association of a TGB movement protein. The results suggest that PMTV TGB1 requires interaction with nuclear components and, possibly, microtubules for long-distance movement of viral RNA.  相似文献   

2.
Systemic symptoms induced on Nicotiana tabacum cv. Xanthi by Tobacco mosaic virus (TMV) are modulated by one or both amino-coterminal viral 126- and 183-kDa proteins: proteins involved in virus replication and cell-to-cell movement. Here we compare the systemic accumulation and gene silencing characteristics of TMV strains and mutants that express altered 126- and 183-kDa proteins and induce varying intensities of systemic symptoms on N. tabacum. Through grafting experiments, it was determined that M(IC)1,3, a mutant of the masked strain of TMV that accumulated locally and induced no systemic symptoms, moved through vascular tissue but failed to accumulate to high levels in systemic leaves. The lack of M(IC)1,3 accumulation in systemic leaves was correlated with RNA silencing activity in this tissue through the appearance of virus-specific, approximately 25-nucleotide RNAs and the loss of fluorescence from leaves of transgenic plants expressing the 126-kDa protein fused with green fluorescent protein (GFP). The ability of TMV strains and mutants altered in the 126-kDa protein open reading frame to cause systemic symptoms was positively correlated with their ability to transiently extend expression of the 126-kDa protein:GFP fusion and transiently suppress the silencing of free GFP in transgenic N. tabacum and transgenic N. benthamiana, respectively. Suppression of GFP silencing in N. benthamiana occurred only where virus accumulated to high levels. Using agroinfiltration assays, it was determined that the 126-kDa protein alone could delay GFP silencing. Based on these results and the known synergies between TMV and other viruses, the mechanism of suppression by the 126-kDa protein is compared with those utilized by other originally characterized suppressors of RNA silencing.  相似文献   

3.
To develop a quantitative assay of fungal growth inside plant tissues, strains of Colletotrichum destructivum and Colletotrichum orbiculare were transformed with a modified green fluorescent protein (GFP) gene fused with a glyceraldehyde-3-phosphate dehydrogenase promoter from Aspergillus nidulans. Transformants expressed GFP in culture and had the same growth rate and general appearance as the wild type. GFP was observed in all fungal structures during infection of leaves of Nicotiana benthamiana, except for the melanized appressoria and setae. The timing and appearance of the fungal structures in the host appeared to be identical to that of the wild type. GFP accumulation in inoculated leaves of N. benthamiana was quantified in leaf extracts using a fluorescence microplate reader, and the quantity of fluorescence was strongly correlated with the growth of the fungus as measured by the amount of fungal actin gene expression using Northern blot hybridizations. These results demonstrated that assaying green fluorescence levels from a GFP-transformed fungus is an accurate, fast and easy means of quantifying fungal growth inside host plant cells.  相似文献   

4.
Plasmodesmal conductivity is regulated in part by callose turnover, which is hypothesized to be determined by beta-1,3-glucan synthase versus glucanase activities. A proteomic analysis of an Arabidopsis thaliana plasmodesmata (Pd)-rich fraction identified a beta-1,3-glucanase as present in this fraction. The protein encoded by the putative plasmodesmal associated protein (ppap) gene, termed AtBG_ppap, had previously been found to be a post-translationally modified glycosylphosphatidylinositol (GPI) lipid-anchored protein. When fused to green fluorescent protein (GFP) and expressed in tobacco (Nicotiana tabacum) or Nicotiana benthamiana epidermal cells, this protein displays fluorescence patterns in the endoplasmic reticulum (ER) membrane system, along the cell periphery and in a punctate pattern that co-localizes with aniline blue-stained callose present around the Pd. Plasma membrane localization was verified by co-localization of AtBG_ppap:GFP together with a plasma membrane marker N-[3-triethylammoniumpropyl]-4-[p-diethylaminophenylhexatrienyl] pyridinium dibromide (FM4-64) in plasmolysed cells. In Arabidopsis T-DNA insertion mutants that do not transcribe AtBG_ppap, functional studies showed that GFP cell-to-cell movement between epidermal cells is reduced, and the conductivity coefficient of Pd is lower. Measurements of callose levels around Pd after wounding revealed that callose accumulation in the mutant plants was higher. Taken together, we suggest that AtBG_ppap is a Pd-associated membrane protein involved in plasmodesmal callose degradation, and functions in the gating of Pd.  相似文献   

5.
Upon infection, Tomato spotted wilt virus (TSWV) forms ribonucleoprotein particles (RNPs) that consist of nucleoprotein (N) and viral RNA. These aggregates result from the homopolymerization of the N protein, and are highly stable in plant cells. These properties feature the N protein as a potentially useful protein fusion partner. To evaluate this potential, the N protein was fused to the Aequorea victoria green fluorescent protein (GFP), either at the amino or carboxy terminus, and expressed in plants from binary vectors in Nicotiana benthamiana leaves were infiltrated with Agrobacterium tumefaciens and evaluated after 4 days, revealing an intense GFP fluorescence under UV light. Microscopic analysis revealed that upon expression of the GFP:N fusion a small number of large aggregates were formed, whereas N:GFP expression led to a large number of smaller aggregates scattered throughout the cytoplasm. A simple purification method was tested, based on centrifugation and filtration, yielding a gross extract that contained large amounts of N:GFP aggregates, as confirmed by GFP fluorescence and Western blot analysis. These results show that the homopolymerization properties of the N protein can be used as a fast and simple way to purify large amounts of proteins from plants.  相似文献   

6.
Potato virus X (PVX) requires three proteins, p25, p12, and p8, encoded by the triple gene block plus the coat protein (CP) for cell-to-cell movement. When each of these proteins was co-expressed with a cytosolic green fluorescent protein (GFP) in the epidermal cells of Nicotiana benthamiana by the microprojectile bombardment-mediated gene delivery method, only p12 enhanced diffusion of co-expressed GFP, indicating an ability to alter plasmodesmal permeability. p25, p12, and CP, expressed transiently in the initially infected cells, transcomplemented the corresponding movement-defective mutants to spread through two or more cell boundaries. Thus, these proteins probably move from cell to cell with the genomic RNA. In contrast, p8 only functioned intracellularly and was not absolutely required for cell-to-cell movement. Since overexpression of p12 overcame the p8 deficiency, p8 appears to facilitate the functioning of p12, presumably by mediating its intracellular trafficking. Considering the likelihood that p12 and p8 are membrane proteins, it is suggested that intercellular as well as intracellular movement of PVX involves a membrane-mediated process.  相似文献   

7.
Expression of the Tomato yellow leaf curl virus-China (TYLCV-C) C2 protein and green fluorescent protein (GFP) fused to the C2 protein (C2-GFP) in Nicotiana benthamiana from a Potato virus X (PVX) vector induced necrotic ringspots on inoculated leaves as well as necrotic vein banding and severe necrosis on systemically infected leaves. The localization of GFP fluorescence in plant cells infected with PVX/C2-GFP and in insect cells transfected with Baculovirus expressing C2-GFP indicates that the TYLCV-C C2 protein is capable of shuttling GFP into plant and insect cell nuclei. Our data demonstrate that the TYLCV-C C2 protein may contribute to viral pathogenicity in planta and is nuclear localized.  相似文献   

8.
9.
Cui X  Li G  Wang D  Hu D  Zhou X 《Journal of virology》2005,79(16):10764-10775
Our previous results demonstrated that the DNAbeta satellite (Y10beta) associated with Tomato yellow leaf curl China virus Y10 isolate (TYLCCNV-Y10) is essential for induction of leaf curl symptoms in plants and that transgenic expression of its betaC1 gene in Nicotiana plants induces virus-like symptoms. In the present study, in vitro DNA binding activity of the betaC1 proteins of Y10beta and DNAbeta (Y35beta) found in the Tobacco curly shoot virus Y35 isolate (TbCSV-Y35) were studied following their expression as six-His fusion proteins in Escherichia coli. Electrophoretic mobility shift assays and UV cross-linking experiments revealed that betaC1 proteins could bind both single-stranded and double-stranded DNA without size or sequence specificity. Suppression of green fluorescent protein (GFP) transgene silencing was observed with the new leaves of GFP-expressing Nicotiana benthamiana plants coinoculated by TYLCCNV-Y10 plus Y10beta or by TbCSV-Y35 plus Y35beta. In a patch agroinfiltration assay, the transiently expressed betaC1 gene of Y10beta or Y35beta was able to suppress host RNA silencing activities and permitted the accumulation of high levels of GFP mRNA in the infiltrated leaf patches of GFP transgenic N. benthamiana plants. The betaC1 protein of Y10beta accumulated primarily in the nuclei of plant and insect cells when fused with beta-glucuronidase or GFP and immunogold labeling showed that the betaC1 protein is present in the nuclei of infected N. benthamiana plants. A mutant version of Y10beta carrying the mutations within the putative nuclear localization sequence of the Y10 betaC1 protein failed to induce disease symptoms, suppress RNA silencing, or accumulate in the nucleus, suggesting that nuclear localization of the betaC1 protein is a key requirement for symptom induction and silencing suppression.  相似文献   

10.
The intercellular and intracellular distribution of the movement protein (MP) of the Ob tobamovirus was examined in infected leaf tissues using an infectious clone of Ob in which the MP gene was translationally fused to the gene encoding the green fluorescent protein (GFP) of Aequorea victoria. In leaves of Nicotiana tabacum and N. benthamiana, the modified virus caused fluorescent infection sites that were visible as expanding rings. Microscopy of epidermal cells revealed subcellular patterns of accumulation of the MP:GFP fusion protein which differed depending upon the radial position of the cells within the fluorescent ring. Punctate, highly localized fluorescence was associated with cell walls of all of the epidermal cells within the infection site, and apparently represents association of the fusion protein with plasmodesmata; furthermore, fluorescence was retained in cell walls purified from infected leaves. Within the brightest region of the fluorescent ring, the MP:GFP was observed in irregularly shaped inclusions in the cortical regions of infected cells. Fluorescent filamentous structures presumed to represent association of MP:GFP with microtubules were observed, but were distributed differently within the infection sites on the two hosts. Within cells containing filaments, a number of fluorescent bodies, some apparently streaming in cytoplasmic strands, were also observed. The significance of these observations is discussed in relation to MP accumulation, targeting to plasmodesmata, and degradation.  相似文献   

11.
Green fluorescent protein (GFP) gene was transfected and expressed in murine embryonic stem (ES) cells under the control of the astrocyte-specific glial fibrillary acidic protein (GFAP) promoter. Stably transfected cells were characterized by immunohistochemistry and by fluorescence microscopy. Cells containing GFP were differentiated to Type I and Type II astrocytes after induction by all-trans retinoic acid. Differentiated cells were expressed GFP and visualized by fluorescence microscopy. Differentiated cells expressed GFP were correlated with the expression of GFAP and morphological change. It demonstrates that the cell line expressed GFP can be used to trace the morphological changes of astrocytes during differentiation, and further for the isolation of astrocytes from the mixed cells differentiated from ES cell.  相似文献   

12.
13.
The structure of a chaperonin caging a substrate protein is not quite clear. We made engineered group II chaperonins fused with a guest protein and analyzed their structural and functional features. Thermococcus sp. KS-1 chaperonin alpha-subunit (TCP) which forms an eightfold symmetric double-ring structure was used. Expression plasmids were constructed which carried two or four TCP genes ligated head to tail in phase and a target protein gene at the 3' end of the linked TCP genes. Electron microscopy showed that the expressed gene products with the molecular sizes of ~120 kDa (di-TCP) and ~230 kDa (tetra-TCP) formed double-ring complexes similar to those of wild-type TCP. The tetra-TCP retained ATPase activity and its thermostability was significantly higher than that of the wild type. A 260-kDa fusion protein of tetra-TCP and green fluorescent protein (GFP, 27 kDa) was able to form the double-ring complexes with green fluorescence. Image analyses indicated that the GFP moiety of tetra-TCP/GFP fusion protein was accommodated in the central cavity, and tetra-TCP/GFP formed the closed-form similar to that crystallographically resolved in group II chaperonins. Furthermore, it was suggested that caging GFP expanded the cavity around the bottom. Using this tetra-TCP fusion strategy, two virus structural proteins (21-25 kDa) toxic to host cells or two antibody fragments (25-36 kDa) prone to aggregate were well expressed in the soluble fraction of Escherichia coli. These fusion products also assembled to double-ring complexes, suggesting encapsulation of the guest proteins. The antibody fragments liberated by site-specific protease digestion exhibited ligand-binding activities.  相似文献   

14.
Membrane proteins are challenging targets for structural biologists. Finding optimal candidates for such studies requires extensive and laborious screening of protein expression and/or stability in detergent. The use of green fluorescent protein (GFP) as a reporter has enormously facilitated these studies; however, its 238 residues can potentially alter the intrinsic properties of the target (e.g., expression or stability). With the aim of minimizing undesired effects of full-length GFP, here we describe the utility of a split GFP reporter during precrystallization studies of membrane proteins. GFP fluorescence appeared by complementation of the first 15 residues of GFP (GFP(11)) (fused to the C terminus of a membrane protein target) with the remaining nonfluorescent GFP (GFP(1-10)). The signal obtained after sequential expression of SteT (l-serine/l-threonine exchanger of Bacillus subtilis) fused to GFP(11) followed by GFP(1-10) specifically measured the protein fraction inserted into the Escherichia coli cytoplasmic membrane, thereby discarding protein aggregates confined as inclusion bodies. Furthermore, in vitro complementation of purified SteT-GFP(11) with purified GFP(1-10) was exploited to rapidly assess the stability of wild-type and G294V mutant versions of SteT-GFP(11) following detergent solubilization and purification. This method can be applied in a medium- to high-throughput manner with multiple samples.  相似文献   

15.
The nucleocapsid protein VP15 of white spot syndrome virus (WSSV) is a basic DNA-binding protein. Three canonical bipartite nuclear localization signals (NLSs), called NLS1 (aa 11-27), NLS2 (aa 33-49) and NLS3 (44-60), have been detected in this protein, using the ScanProsite computer program. To determine the nuclear localization sequence of VP15, the full-length open reading frame, or the sequence of one of the three NLSs, was fused to the green fluorescent protein (GFP) gene, and transiently expressed in insect Sf9 cells. Transfection with full-length VP15 resulted in GFP fluorescence being distributed exclusively in the nucleus. NLS 1 alone could also direct GFP to the nucleus, but less efficiently. Neither of the other two NLSs (NLS2 and 3) was functional when expressed alone, but exhibited similar activity to NLS1 when they were expressed as a fusion peptide. Furthermore, a mutated VP15, in which the two basic amino acids (11RR12) of NLSI were changed to two alanines (11AA12), caused GFP to be localized only in the cytoplasm of Sf9 cells. These results demonstrated that VP15, as a nuclear localization protein, needs cooperation between its three NLSs, and that the two residues (11RR12) of NLS1 play a key role in transporting the protein to the nucleus.  相似文献   

16.
The translocation of proteins to cyanobacterial cell envelope is made complex by the presence of a highly differentiated membrane system. To investigate the protein translocation in cyanobacterium Synechococcus PCC 7942 using the truncated ice nucleation protein (InpNC) from Pseudomonas syringae KCTC 1832, the green fluorescent protein (GFP) was fused in frame to the carboxyl-terminus of InpNC. The fluorescence of GFP was found almost entirely as a halo in the outer regions of cells which appeared to correspond to the periplasm as demonstrated by confocal laser scanning microscopy, however, GFP was not displayed on the outermost cell surface. Western blotting analysis revealed that InpNC-GFP fusion protein was partially degraded. The N-terminal domain of InpNC may be susceptible to protease attack; the remaining C-terminal domain conjugated with GFP lost the ability to direct translocation across outer membrane and to act as a surface display motif. The fluorescence intensity of cells with periplasmic GFP was approximately 6-fold lower than that of cells with cytoplasmic GFP. The successful translocation of the active GFP to the periplasm may provide a potential means to study the property of cyanobacterial periplasmic substances in response to environmental changes in a non-invasive manner.  相似文献   

17.
Green fluorescent protein (GFP) and GFP-like proteins of different colors are important tools in cell biology. In many studies, the intracellular targeting of proteins has been determined by transiently expressing GFP fusion proteins and analyzing their intracellular localization by fluorescence microscopy. In most vectors, expression of GFP is driven by the enhancer/promoter cassette of the immediate early gene of human cytomegalovirus (hCMV). This cassette generates high levels of protein expression in most mammalian cell lines. Unfortunately, these nonphysiologically high protein levels have been repeatedly reported to artificially alter the intracellular targeting of proteins fused to GFP. To cope with this problem, we generated a multitude of attenuated GFP expression vectors by modifying the hCMV enhancer/promoter cassette. These modified vectors were transiently expressed, and the expression levels of enhanced green fluorescent protein (EGFP) alone and enhanced yellow fluorescent protein (EYFP) fused to another protein were determined by fluorescence microscopy and/or Western blotting. As shown in this study, we were able to (i) clearly reduce the expression of EGFP alone and (ii) reduce expression of an EYFP fusion protein down to the level of the endogenous protein, both in a graded manner.  相似文献   

18.
Green fluorescent protein (GFP) is useful for studying protein trafficking in plant cells. This utility could potentially be extended to develop an efficient secretory reporter system or to enable on-line monitoring of secretory recombinant protein production in plant cell cultures. Toward this end, the aim of the present study was to: (1) demonstrate and characterize high levels of secretion of fluorescent GFP from transgenic plant cell culture; and (2) examine the utility of GFP fluorescence for monitoring secreted recombinant protein production. In this study we expressed in tobacco cell cultures a secretory GFP construct made by splicing an Arabidopsis basic chitinase signal sequence to GFP. Typical extracellular GFP accumulation was 12 mg/L after 10 to 12 days of culture. The secreted GFP is functional and it accounts for up to 55% of the total GFP expressed. Findings from culture treatments with brefeldin A suggest that GFP is secreted by the cultured tobacco cells via the classical endoplasmic reticulum-Golgi pathway. Over the course of flask cultures, medium fluorescence increased with the secreted GFP concentrations that were determined using either Western blot or enzyme-linked immunoassay. Real-time monitoring of secreted GFP in plant cell cultures by on-line fluorescence detection was verified in bioreactor cultures in which the on-line culture fluorescence signals showed a linear dependency on the secreted GFP concentrations.  相似文献   

19.
Existing variants of green fluorescent protein (GFP) often misfold when expressed as fusions with other proteins. We have generated a robustly folded version of GFP, called 'superfolder' GFP, that folds well even when fused to poorly folded polypeptides. Compared to 'folding reporter' GFP, a folding-enhanced GFP containing the 'cycle-3' mutations and the 'enhanced GFP' mutations F64L and S65T, superfolder GFP shows improved tolerance of circular permutation, greater resistance to chemical denaturants and improved folding kinetics. The fluorescence of Escherichia coli cells expressing each of eighteen proteins from Pyrobaculum aerophilum as fusions with superfolder GFP was proportional to total protein expression. In contrast, fluorescence of folding reporter GFP fusion proteins was strongly correlated with the productive folding yield of the passenger protein. X-ray crystallographic structural analyses helped explain the enhanced folding of superfolder GFP relative to folding reporter GFP.  相似文献   

20.
We have constructed a matched set of binary vectors designated pGD, pGDG and pGDR for the expression and co-localization of native proteins and GFP or DsRed fusions in large numbers of plant cells. The utility of these vectors following agroinfiltration into leaves has been demonstrated with four genes from Sonchus yellow net virus, a plant nucleorhabdovirus, and with a nucleolar marker protein. Of the three SYNV proteins tested, sc4 gave identical localization patterns at the cell wall and nucleus when fused to GFP or DsRed. However, some differences in expression patterns were observed depending on whether DsRed or GFP was the fusion partner. In this regard, the DsRed:P fusion showed a similar pattern of localization to GFP:P, but localized foci appeared in the nucleus and near the periphery of the nucleus. Nevertheless, the viral nucleocapsid protein, expressed as a GFP:N fusion, co-localized with DsRed:P in a subnuclear locale in agreement with our previous observations (Goodin et al., 2001). This locale appears to be distinct from the nucleolus as indicated by co-expression of the N protein, DsRed:P and a nucleolar marker AtFib1 fused to GFP. The SYNV M protein, which is believed to be particularly prone to oligomerization, was detectable only as a GFP fusion. Our results indicate that agroinfiltration with bacteria containing the pGD vectors is extremely useful for transient expression of several proteins in a high proportion of the cells of Nicotiana benthamiana leaves. The GFP and DsRed elements incorporated into the pGD system should greatly increase the ease of visualizing co-localization and interactions of proteins in a variety of experimental dicotyledonous hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号