首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
对36个引自加拿大的豌豆品种(系)进行抗白粉病表型和标记基因型鉴定,明确了豌豆品种Cooper和Tara白粉病抗性等位基因。苗期接种了2个不同地理来源的豌豆白粉病菌分离物,32个品种(系)对2个分离物均表现为免疫;品系MP1818-2对云南白粉菌分离物EPYN免疫,但对北京分离物EPBJ感病;其余3个品种对2个分离物均感病。4个与豌豆抗白粉病基因er1连锁的SCAR标记将36个豌豆品种(系)区分为5个标记基因型。与野生型PsMLO1基因序列比较发现,豌豆品种Cooper和Tara的PsMLO1候选基因均在680 bp处发生C变G的单核苷酸突变。  相似文献   

2.
Powdery mildew caused by the biotrophic ascomycete fungus Erysiphe pisi Syd. is one the most devastating diseases of peas (Pisum sativum L.) with enormous impact in seed production. The most efficient genetic resistance to this disease, so far identified, is conferred by the naturally occurring or experimentally induced by chemical mutagenesis recessive state of the locus er1. Genetically mapped over 2 decades ago, this gene was recently identified as a homolog of the barley (Hordeum sativum L.) powdery mildew resistance gene MLO, and renamed as PsMLO1. The broad wide resistance conferred by the er1/PsMLO1 locus was found to be a consequence of the loss of function of the encoded PsMLO1 protein. After the publication of the expressed sequence of this gene by another research group, we published the genomic sequences of this gene which harbors a relatively long (TA) microsatellite sequence (SSR) in the fifth intron. SSR markers based on this highly polymorphic microsatellite can be used for marker-assisted selection in multiple pea powdery mildew resistance breeding programs involving the er1/PsMLO1 resistance, except in the rare circumstances where the progenitor lines are monomorphic for the microsatellite sequence.  相似文献   

3.
The powdery mildew disease affects several crop species and is also one of the major threats for pea (Pisum sativum L.) cultivation all over the world. The recessive gene er1, first described over 60 years ago, is well known in pea breeding, as it still maintains its efficiency as a powdery mildew resistance source. Genetic and phytopathological features of er1 resistance are similar to those of barley, Arabidopsis, and tomato mlo powdery mildew resistance, which is caused by the loss of function of specific members of the MLO gene family. Here, we describe the obtainment of a novel er1 resistant line by experimental mutagenesis with the alkylating agent diethyl sulfate. This line was found to carry a single nucleotide polymorphism in the PsMLO1 gene sequence, predicted to result in premature termination of translation and a non-functional protein. A cleaved amplified polymorphic sequence (CAPS) marker was developed on the mutation site and shown to be fully co-segregating with resistance in F2 individuals. Sequencing of PsMLO1 from three powdery mildew resistant cultivars also revealed the presence of loss-of-function mutations. Taken together, results reported in this study strongly indicate the identity between er1 and mlo resistances and are expected to be of great breeding importance for the development of resistant cultivars via marker-assisted selection.  相似文献   

4.
Two pea (Pisum sativum L.) powdery mildew-resistant mutant lines, S(er1mut1) and F(er1mut2), were previously obtained by experimental chemical mutagenesis with ethylnitrosourea. Identification and subsequent analysis of the genomic sequence of the PsMLO1 gene revealed one single nucleotide mutation in each mutant line that leads to either a transversion or a transition, respectively, resulting in premature stop codons that drastically truncate the protein product of this gene in these two mutant lines. These results confirm the previous findings that PsMLO1 is the powdery mildew resistance gene er1. Only one additional mutation (transition) was observed in the S(er1mut1), downstream of the protein-truncating stop codon. Mutations were not identified in the intron regions of the gene. Specific molecular markers (cleaved amplified polymorphic sequences and sequence-tagged sites) were generated for the protein-truncating mutations, and these provide breeders with very efficient tools for marker-assisted selection when either of the two mutated lines are used in plant breeding programmes.  相似文献   

5.
6.
Powdery mildew is the most widespread disease of pea (Pisum sativum L.) and causes severe economic losses worldwide. Recessively inherited er1 powdery mildew resistance, successfully used for decades in pea breeding programs, has recently been shown to originate from the loss of function of the PsMLO1 gene. Five er1 alleles, each corresponding to a different PsMLO1 null mutation, have been characterized to date in pea germplasm. In order to aid er1 selection, we aimed to identify functional markers which target PsMLO1 polymorphisms directly responsible for the resistant phenotype. Highly informative cleaved amplified polymorphic sequence (CAPS), derived cleaved amplified polymorphic sequence (dCAPS), sequence tagged site (STS) and high-resolution melting (HRM) markers were developed which enable the selection of each of the five er1 alleles. Taken together, the results described here provide a powerful tool for breeders, overcoming limitations of previously reported er1-linked markers due to the occurrence of recombination with the resistance locus and/or the lack of polymorphism between parental genotypes. The HRM marker er1-5/HRM54 reported here, targeting a mutagenesis-induced er1 allele recently described by us, does not require manual processing after PCR amplification, and is therefore suitable for large-scale breeding programs based on high-throughput automated screening.  相似文献   

7.
一些小麦白粉病抗源抗性基因鉴定分析   总被引:8,自引:2,他引:6  
研究鉴定了我国37份小麦白粉病抗源的抗性基因,19份材料不具有任何抗性基因;6份材料具有来自1BL/1RS易位系的抗性基因Pm8;5份材料具有抗性基因Pm5a;3份分别具有对目前欧洲所有生理小种均抗的抗性基因Pm21、Pm16和Pm12;4份材料具有新的抗性基因。  相似文献   

8.
Powdery mildew of pea is caused by Erysiphe pisi DC and is a serious threat to pea (Pisum sativum L.) production throughout much of the world. Development and utilization of genetic resistance to powdery mildew is considered an effective and sustainable strategy to manage this disease. One gene, er1, conferring powdery mildew resistance, was previously cloned and sequenced, and the functional markers for each resistance allele were reported. Allele-specific DNA markers are efficient and powerful tools to facilitate crop improvement and new cultivar development in breeding programs. However, extensive application of these markers is limited by gel-associated obstacles. In this study, eight breeder-friendly kompetitive allele-specific PCR (KASPar) markers were developed to overcome the problems of gel-based markers and increase the efficiency of genotypic screening. In order to identify additional pea germplasm with powdery mildew resistance, these KASPar markers were deployed and used to genotype a pea collection derived from the USDA pea single-plant (PSP) collection. Simultaneously, a phenotypic screening and a genotypic validation using the corresponding gel-based functional markers were conducted on the PSP collection. One pea accession, PI 142775, was identified by both phenotyping and genotyping to carry the allele er1-1 for powdery mildew resistance, indicating that the KASPar assay is an efficient and robust tool for breeding for powdery mildew resistance.  相似文献   

9.
Lebedeva TV  Peusha HO 《Genetika》2006,42(1):71-77
Using hybrid analysis and test-clone method, 102 accessions of Triticum monococcum L. from the collection of the Vavilov All-Russia Institute of Plant Industry have been studied. This species of wheat has been found to by considerably polymorphic with respect to the resistance to the fungus Erysiphe graminis DC. f. sp. tritici Marchal. causing powdery mildew. The resistance of most accessions to the fungus population and clones is determined by dominant genes. In rare cases, the resistance was determined by recessive genes or one, two, or three oligogenes. A group of einkorn wheat accessions has been found in which the resistance to powdery mildew was determined by the same dominant factor or different but closely linked ones. Recessive resistance genes of T. monococcum differ from the recessive gene pm5 determining the resistance of T. aestivum plants. The genome of T. monococcum contains various genes of resistance to powdery mildew and is a potential source of effective genes to be used when selecting cultivated species of wheat for immunity.  相似文献   

10.
Twelve Polish spring wheat cultivars and 18 spring wheat accessions from CIMMYT, Mexico, were examined for resistance to a highly pathogenic Fusarium culmorum strain KF846 and powdery mildew in 5-year field experiments. Resistant wheat cultivars (Sumai 3 and Frontana) served as controls. The mean percentage of Fusarium-damaged kernels (% FDK) for 5 years was lower in CIMMYT accessions (16.7%) than in Polish spring cultivars (28.3%). In all Polish spring cultivars, % FDK was higher than in the control cultivars Sumai 3 and Frontana (12-20%). The mean disease score (on a scale of 1-9) for powdery mildew (natural infection) for all examined cultivars and lines ranged from 0 to 7 and in the Polish spring cultivars was significantly lower (0-5). Cultivars Eta, Henika, Ismena, Jasna and Olimpia were found to be the least susceptible to powdery mildew in field experiments. The laboratory host-pathogen tests with Blumeria graminis f. sp. tritici isolates showed that only two cultivars were characterized by identical resistance patterns as the standard differential lines with documented resistance genes. Cultivar Alkora had the gene Pm3d, and Henika had Pm5. The gene Pm3d was identified in cultivars Jasna and Eta in combination with another unknown gene/genes. Cultivars Santa and Torka had the gene Pm5 in combination with another unknown gene/genes. Four cultivars: Banti, Ismena, Olimpia and Sigma, showed resistance to all mildew isolates employed in a laboratory test. The accession IPG-SW-14 was the least susceptible to both pathogens (F. culmorum and powdery mildew) in all 5 years of experiments. This line is the best candidate for deriving new cultivars with improved resistance to fungal diseases.  相似文献   

11.
小麦近缘种属来源的抗白粉病基因是培育小麦抗病品种,防治白粉病危害的最重要基因来源。Pm57是位于西尔斯山羊草2S^s#l染色体长臂上的一个外源基因,对小麦白粉病具有苗期和成株期广谱抗性。为了创制Pm57白粉病抗性丧失突变体,利用基于基因突变体的植物抗病基因克隆新兴技术分离Pm57基因,选用0.625%的甲基磺酸乙酯(EMS)对1万粒小麦-西尔斯山羊草Pm57易位系89(5)69种子进行了诱变处理,M1大田密播种植,收获了1598个M2可育株系。初步对其中300个M2株系进行苗期白粉病抗性接种鉴定,并利用2个Pm57基因特异分子标记X2L4g9P4/HaeⅢ和X284274及小麦全国区试品系DUS测试所用的42对SSR核心引物对Pm57抗性丧失突变体进行鉴定,筛选出来自27个M2株系的真实抗性丧失突变体70个,Pm57基因抗性丧失突变体频率达到9.0%。本研究所获得的白粉病抗性丧失突变体为Pm57基因的后续克隆与抗白粉病分子机理研究提供了重要的材料基础。  相似文献   

12.
一粒小麦抗白粉病和条锈病基因的分析   总被引:2,自引:0,他引:2  
一粒小麦是普通小麦抗性改良的宝贵资源.本研究对24份一粒小麦分别进行了白粉病和条锈病混合菌种苗期接种鉴定,进一步分别用一套白粉病菌菌株(15个)对2份乌拉尔图小麦和条锈病菌小种(21个)对1份栽培一粒小麦进行接种鉴定,其中乌拉尔图小麦UR206能抵抗所有供试白粉菌菌株,UR204除对白粉菌菌株E11感病外,对其余菌株表现抗性;栽培一粒小麦MO205对不同条锈菌小种表现出不同的抗性反应,研究表明乌拉尔图小麦UR206、UR204和栽培一粒小麦MO205分别含有与已知抗白粉病和抗条锈病基因不同的新基因.对乌拉尔图小麦UR204、UR206和栽培一粒小麦MO205分别进行抗白粉和条锈病基因的遗传分析,结果表明乌拉尔图小麦UR204和UR206分别含有一对显性抗白粉病基因,栽培一粒小麦MO205含有两对独立遗传的显性抗条锈病基因.  相似文献   

13.
Three genes, er1, er2 and Er3, conferring resistance to powdery mildew (Erysiphe pisi) in pea have been described so far. Because single gene-controlled resistance tends to be overcome by evolution of pathogen virulence, accumulation of several resistance genes into a single cultivar should enhance the durability of the resistance. Molecular markers linked to genes controlling resistance to E. pisi may facilitate gene pyramiding in pea breeding programs. Molecular markers linked to er1 and er2 are available. In the present study, molecular markers linked to Er3 have been obtained. A segregating F2 population derived from the cross between a breeding line carrying the Er3 gene, and the susceptible cultivar ‘Messire’ was developed and genotyped. Bulk Segregant Analysis (BSA) was used to identify Random Amplified Polymorphic DNA (RAPD) markers linked to Er3. Four RAPD markers linked in coupling phase (OPW04_637, OPC04_640, OPF14_1103, and OPAH06_539) and two in repulsion phase (OPAB01_874 and OPAG05_1240), were identified. Two of these, flanking Er3, were converted to Sequence Characterized Amplified Region (SCAR) markers. The SCAR marker SCW4637 co-segregated with the resistant gene, allowing the detection of all the resistant individuals. The SCAR marker SCAB1874, in repulsion phase with Er3, was located at 2.8 cM from the gene and, in combination with SCW4637, was capable to distinguish homozygous resistant individuals from heterozygous with a high efficiency. In addition, the validation for polymorphism in different genetic backgrounds and advanced breeding material confirmed the utility of both markers in marker-assisted selection.  相似文献   

14.
Powdery mildew is a common disease of field pea, Pisum sativum L., and is caused by the ascomycete fungus Erysiphe pisi. It can cause severe damage in areas where pea is cultivated. Today breeders want to develop new pea lines that are resistant to the disease. To make the breeding process more efficient, it is desirable to find genetic markers for use in a marker-assisted selection (MAS) strategy. In this study, microsatellites (SSR) were used to find markers linked to powdery mildew resistance. The resistant pea cultivar '955180' and the susceptible pea cultivar 'Majoret' were crossed and F2 plants were screened with SSR markers, using bulked segregant analysis. A total of 315 SSR markers were screened out of which five showed linkage to the powdery mildew resistance gene. No single marker was considered optimal for inclusion in a MAS program. Instead, two of the markers can be used in combination, which would result in only 1.6% incorrectly identified plants. Thus SSR markers can be successfully used in marker-assisted selection for powdery mildew resistance breeding in pea.  相似文献   

15.
16.
Using hybrid analysis and test-clone method, 102 accessions of Triticum monococcum L. from the collection of the Vavilov All-Russia Institute of Plant Industry have been studied. This species of wheat has been found to by considerably polymorphic with respect to the resistance to the fungus Erysiphe graminis DC. f. sp. tritici Marchal. causing powdery mildew. The resistance of most accessions to the fungus population and clones is determined by dominant genes. In rare cases, the resistance was determined by recessive genes or one, two, or three oligogenes. A group of einkorn wheat accessions has been found in which the resistance to powdery mildew was determined by the same dominant factor or different but closely linked ones. Recessive resistance genes of T. monococcum differ from the recessive gene pm5 determining the resistance of T. aestivum plants. The genome of T. monococcum contains various genes of resistance to powdery mildew and is a potential source of effective genes to be used when selecting cultivated species of wheat for immunity.  相似文献   

17.
Here, an approach based on natural genetic variation was adopted to analyse powdery mildew resistance in Arabidopsis thaliana. Accessions resistant to multiple powdery mildew species were crossed with the susceptible Col-0 ecotype and inheritance of resistance was analysed. Histochemical staining was used to visualize archetypal plant defence responses such as callose deposition, hydrogen peroxide accumulation and host cell death in a subset of these ecotypes. In six accessions, resistance was likely of polygenic origin while 10 accessions exhibited evidence for a single recessively or semi-dominantly inherited resistance locus. Resistance in the latter accessions was mainly manifested at the terminal stage of the fungal life cycle by a failure of abundant conidiophore production. The resistance locus of several of these ecotypes was mapped to a genomic region containing the previously analysed atypical RPW8 powdery mildew resistance genes. Gene silencing revealed that members of the RPW8 locus were responsible for resistance to Golovinomyces orontii in seven accessions. These results suggest that broad-spectrum powdery mildew resistance in A. thaliana is predominantly of polygenic origin or based on RPW8 function. The findings shed new light on the natural variation of inheritance, phenotypic expression and pathogen range of RPW8-conditioned powdery mildew resistance.  相似文献   

18.
Current information on barley resistance genes available from scientific papers and on-line databases is summarised. The recent literature contains information on 107 major resistance genes (R genes) against fungal pathogens (excluding powdery mildew), pathogenic viruses and aphids identified in Hordeum vulgare accessions. The highest number of resistance genes was identified against Puccinia hordei, Rhynchosporium secalis, and the viruses BaYMV and BaMMV, with 17, 14 and 13 genes respectively. There is still a lot of confusion regarding symbols for R genes against powdery mildew. Among the 23 loci described to date, two regions Mla and Mlo comprise approximately 31 and 25 alleles. Over 50 R genes have already been localised and over 30 mapped on 7 barley chromosomes. Four barley R genes have been cloned recently: Mlo, Rpg1, Mla1 and Mla6, and their structures (sequences) are available. The paper presents a catalogue of barley resistance gene symbols, their chromosomalocation and the list of available DNA markers useful in characterising cultivars and breeding accessions.  相似文献   

19.
A total of forty eight accessions of barley landraces from Morocco were screened for resistance to powdery mildew. Twenty two (46%) of tested landraces showed resistance reactions and thirty four single plant lines were selected. Eleven of these lines were tested in seedling stage with seventeen and another twenty three lines with twenty three isolates of powdery mildew respectively. The isolates were chosen according to the virulence spectra observed on the ‘Pallas’ isolines differential set. Line 229–2–2 was identified with resistance to all prevalent in Europe powdery mildew virulence genes. Lines 230–1–1, 248–1–3 showed susceptible reaction for only one and lines 221–3–2, 227–1–1, 244–3–4 for only two isolates respectively. Three different resistance alleles (Mlat, Mla6, and MLA14) were postulated to be present in tested lines alone or in combination. In thirty (88%) tested lines it was impossible to determine which specific gene or genes for resistance were present. Most probably these lines possessed alleles not represented in the ‘Pallas’ isolines differential set. The distribution of reaction type indicated that about 71% of all reaction types observed were classified as powdery mildew resistance (scores 0, 1 and 2). Majority (79%) of resistance reaction types observed in tested lines was intermediate resistance reaction type two and twenty three lines (68%) showed this reaction for inoculation with more than 50% isolates used. The use of new effective sources of resistance from Moroccan barley landraces for diversification of resistance genes for powdery mildew in barley cultivars was discussed.  相似文献   

20.
The broad-spectrum mildew resistance genes RPW8.1 and RPW8.2 define a unique type of plant disease resistance (R) gene, and so far homologous sequences have been found in Arabidopsis thaliana only, which suggests a recent origin. In addition to RPW8.1 and RPW8.2, the RPW8 locus contains three homologs of RPW8, HR1, HR2, and HR3, which do not contribute to powdery mildew resistance. To investigate whether RPW8 has originated recently, and if so the processes involved, we have isolated and analyzed the syntenic RPW8 loci from Arabidopsis lyrata, and from Brassica rapa and B. oleracea. The A. lyrata locus contains four genes orthologous to HR1, HR2, HR3, and RPW8.2, respectively. Two syntenic loci have been characterized in Brassica; one locus contains three genes and is present in both B. oleracea and B. rapa, and the other locus contains a single gene and is detected in B. rapa only. The Brassica homologs have highest similarity to HR3. Sequence analyses suggested that the RPW8 gene family in Brassicaceae originated from an HR3-like ancestor gene through a series of duplications and that RPW8.1 and RPW8.2 evolved from functional diversification through positive selection several MYA. Examination of the sequence polymorphism of 32 A. thaliana accessions at the RPW8 locus and their disease reaction phenotypes revealed that the polymorphic RPW8 locus defines a major source of resistance to powdery mildew diseases. A possible evolutionary mechanism by which functional polymorphism at the AtRPW8 locus has been maintained in contemporary populations of A. thaliana is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号