首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Transfer-messenger RNA (tmRNA) is a unique molecule that combines properties from both tRNA and mRNA, and facilitates a novel translation reaction termed trans -translation. According to phylogenetic sequence analysis among various bacteria and chemical probing analysis, the secondary structure of the 350-400 nt RNA is commonly characterized by a tRNA-like structure, and four pseudoknots with different sizes. A mutational analysis using a number of Escherichia coli tmRNA variants as well as a chemical probing analysis has recently demonstrated not only the presence of the smallest pseudoknot, PK1, upstream of the internal coding region, but also its direct implication in trans -translation. Here, NMR methods were used to investigate the structure of the 31 nt pseudoknot PK1 and its 11 mutants in which nucleotide substitutions are introduced into each of two stems or the linking loops. NMR results provide evidence that the PK1 RNA is folded into a pseudoknot structure in the presence of Mg(2+). Imino proton resonances were observed consistent with formation of two helical stem regions and these stems stacked to each other as often seen in pseudoknot structures, in spite of the existence of three intervening nucleo-tides, loop 3, between the stems. Structural instability of the pseudoknot structure, even in the presence of Mg(2+), was found in the PK1 mutants except in the loop 3 mutants which still maintained the pseudoknot folding. These results together with their biological activities indicate that trans -translation requires the pseudoknot structure stabilized by Mg(2+)and specific residues G61 and G62 in loop 3.  相似文献   

4.
5.
6.
Escherichia coli tmRNA (transfer-messenger RNA) facilitates a trans-translation reaction in which a stalled ribosome on a terminatorless mRNA switches to an internal coding sequence in tmRNA, resulting in the addition of an 11 amino acid residue tag to the truncated protein that is a signal for degradation and in recycling of the stalled ribosome. A tmRNA secondary structure model with a partial tRNA-like structure and several pseudoknots was recently proposed. This report describes an extensive mutational analysis of one predicted pseudoknot (PK1) located upstream of the E. coli tmRNA tag-encoded sequence. Both the extent of aminoacylation and the alanine incorporation into the tag sequence, reflecting the two functions of tmRNA, were measured in vitro for all the engineered RNA variants. To characterize structure-function relationships for the tmRNA mutants, their solution conformations were investigated by using structural probes and by measuring the temperature dependence of their UV absorbance. This analysis strongly supports the presence of a pseudoknot in E. coli tmRNA, and its involvement in trans-translation. Mutations disrupting the first stem of the pseudoknot inactivate function and promote stable alternative conformations. Mutations of the second stem of the pseudoknot also effect both functions. The nucleotide stretch between the two stems (loop 2) is required for efficient trans-translation, and nucleotides at positions 61 and 62 must be guanine residues. The probing data suggest the presence of magnesium ion(s) interacting with loop 2. The loops crossing the minor and major grooves can be mutated without significant effects on tmRNA function. Nucleotide insertion or deletion between the pseudoknot and the coding sequence do not change the mRNA frame of the tag-peptide sequence, suggesting that the pseudoknot structure is not a determinant for the resumption of translation.  相似文献   

7.
The 3'-terminal ends of both the positive and negative strands of the hepatitis C virus (HCV) RNA, the latter being the replicative intermediate, are most likely the initiation sites for replication by the viral RNA-dependent RNA polymerase, NS5B. The structural features of the very conserved 3' plus [(+)] strand untranslated region [3' (+) UTR] are well established (K. J. Blight and C. M. Rice, J. Virol. 71:7345-7352, 1997). However, little information is available concerning the 3' end of the minus [(-)] strand RNA. In the present work, we used chemical and enzymatic probing to investigate the conformation of that region, which is complementary to the 5' (+) UTR and the first 74 nucleotides of the HCV polyprotein coding sequence. By combining our experimental data with computer predictions, we have derived a secondary-structure model of this region. In our model, the last 220 nucleotides, where initiation of the (+) strand RNA synthesis presumably takes place, fold into five stable stem-loops, forming domain I. Domain I is linked to an overall less stable structure, named domain II, containing the sequences complementary to the pseudoknot of the internal ribosomal entry site in the 5' (+) UTR. Our results show that, even though the (-) strand 3'-terminal region has the antisense sequence of the 5' (+) UTR, it does not fold into its mirror image. Interestingly, comparison of the replication initiation sites on both strands reveals common structural features that may play key functions in the replication process.  相似文献   

8.
Viroids are small non-coding parasitic RNAs that are able to infect their host plants systemically. This circular naked RNA makes use of host proteins to accomplish its proliferation. Here we analyze the specific binding of the tomato protein Virp1 to the terminal right domain of potato spindle tuber viroid RNA (PSTVd). We find that two asymmetric internal loops within the PSTVd (+) RNA, each composed of the sequence elements 5′-ACAGG and CUCUUCC-5′, are responsible for the specific RNA–protein interaction. In view of the nucleotide composition we call this structural element an ‘RY motif’. The RY motif located close to the terminal right hairpin loop of the PSTVd secondary structure has an ~5-fold stronger binding affinity than the more centrally located RY motif. Simultaneous sequence alterations in both RY motifs abolished the specific binding to Virp1. Mutations in any of the two RY motifs resulted in non-infectious viroid RNA, with the exception of one case, where reversion to sequence wild type took place. In contrast, the simultaneous exchange of two nucleotides within the terminal right hairpin loop of PSTVd had only moderate influence on the binding to Virp1. This variant was infectious and sequence changes were maintained in the progeny. The relevance of the phylogenetic conservation of the RY motif, and sequence elements therein, amongst various genera of the family Pospiviroidae is discussed.  相似文献   

9.
Site-directed mutations were introduced in the connecting loops and one of the two stem regions of the RNA pseudoknot in the tRNA-like structure of turnip yellow mosaic virus RNA. The kinetic parameters of valylation for each mutated RNA were determined in a cell-free extract from wheat germ. Structure mapping was performed on most mutants with enzymic probes, like RNase T1, nuclease S1 and cobra venom ribonuclease. An insertion of four A residues in the four-membered connecting loop L1 that crosses the deep groove of the pseudoknot reduces aminoacylation efficiency. Deletions up to three nucleotides do not affect aminoacylation or RNA pseudoknot formation. Deletion of the entire loop abolishes aminoacylation. Although elimination of the pseudoknot is presumed, this could not be demonstrated. Unlike the mutations in loop L1, all mutations in the three-membered connecting loop L2 that crosses the shallow groove of the RNA pseudoknot decrease the aminoacylation efficiency considerably. Nonetheless, the RNA pseudoknot is still present in most mutated RNAs. These results indicate that a number of mutations can be introduced in both loops without abolishing aminoacylation. Results obtained with the introduction of mismatches and A.U base-pairs in stem S1 of the pseudoknot, containing three G.C base-pairs in wild-type RNA, indicate that the pseudoknot is only marginally stable. Our estimation of the gain of free energy due to the pseudoknot formation is at most 2.0 kcal/mol. The pseudoknot structure can, however, be stabilized upon binding the valyl-tRNA synthetase.  相似文献   

10.
The elucidation of the structures of viroids, noncoding infectious RNA species, is paramount to obtain an understanding of the various aspects of their life cycles (including replication, transport and pathogenesis). In general, the secondary structures of viroids have been predicted using computer software programs which have been shown to possess several important limitations. Clearly, the predicted structure of a viroid needs to receive physical support prior to its use in the accurate interpretation of any mechanistic studies. Here, SHAPE probing coupled to computer-assisted structure prediction using the RNAstructure software program was employed to determine the structures of five viroids. These species belong to four genera of the Pospiviroidae family, and none have had their structure characterized in solution. In addition, several interesting questions were addressed by either studying various sequence variants or varying the SHAPE conditions. More importantly, this approach is novel in the study of viroids, and should be of significant aid in the determination of the structures of other RNA species.  相似文献   

11.
The tRNA-like structure (TLS) of turnip yellow mosaic virus (TYMV) RNA was previously shown to be efficiently charged by yeast valyl-tRNA synthetase (ValRS). This RNA has a noncanonical structure at its 3'-terminus but mimics a tRNA L-shaped fold, including an anticodon loop containing the major identity nucleotides for valylation, and a pseudoknotted amino acid accepting domain. Here we describe an in vitro selection experiment aimed (i) to verify the completeness of the valine identity set, (ii) to elucidate the impact of the pseudoknot on valylation, and (iii) to investigate whether functional communication exists between the two distal anticodon and amino acid accepting domains. Valylatable variants were selected from a pool of 2 x 10(13) RNA molecules derived from the TYMV TLS randomized in the anticodon loop nucleotides and in the length (1-6 nucleotides) and sequence of the pseudoknot loop L1. After nine rounds of selection by aminoacylation, 42 have been isolated. Among them, 17 RNAs could be efficiently charged by yeast ValRS. Their sequence revealed strong conservation of the second and the third anticodon triplet positions (A(56), C(55)) and the very 3'-end loop nucleotide C(53). A large variability of the other nucleotides of the loop was observed and no wild-type sequence was recovered. The selected molecules presented pseudoknot domains with loop L1 varying in size from 3-6 nucleotides and some sequence conservation, but did neither reveal the wild-type combination. All selected variants are 5-50 times more efficiently valylated than the wild-type TLS, suggesting that the natural viral sequence has emerged from a combination of evolutionary pressures among which aminoacylation was not predominant. This is in line with the role of the TLS in viral replication.  相似文献   

12.
The tomato (Solanum lycopersicum) callose synthase genes CalS11-like and CalS12-like encode proteins that are essential for the formation of callose, a major component of pollen mother cell walls; these enzymes also function in callose formation during pathogen infection. This article describes the targeting of these callose synthase mRNAs by a small RNA derived from the virulence modulating region of two Potato spindle tuber viroid variants. More specifically, viroid infection of tomato plants resulted in the suppression of the target mRNAs up to 1.5-fold, depending on the viroid variant used and the gene targeted. The targeting of these mRNAs by RNA silencing was validated by artificial microRNA experiments in a transient expression system and by RNA ligase-mediated rapid amplification of cDNA ends. Viroid mutants incapable of targeting callose synthase mRNAs failed to induce typical infection phenotypes, whereas a chimeric viroid obtained by swapping the virulence modulating regions of a mild and a severe variant of Potato spindle tuber viroid greatly affected the accumulation of viroids and the severity of disease symptoms. These data provide evidence of the silencing of multiple genes by a single small RNA derived from a viroid.  相似文献   

13.
RNA tertiary motifs play an important role in RNA folding and biochemical functions. To help interpret the complex organization of RNA tertiary interactions, we comprehensively analyze a data set of 54 high-resolution RNA crystal structures for motif occurrence and correlations. Specifically, we search seven recognized categories of RNA tertiary motifs (coaxial helix, A-minor, ribose zipper, pseudoknot, kissing hairpin, tRNA D-loop/T-loop, and tetraloop-tetraloop receptor) by various computer programs. For the nonredundant RNA data set, we find 613 RNA tertiary interactions, most of which occur in the 16S and 23S rRNAs. An analysis of these motifs reveals the diversity and variety of A-minor motif interactions and the various possible loop-loop receptor interactions that expand upon the tetraloop-tetraloop receptor. Correlations between motifs, such as pseudoknot or coaxial helix with A-minor, reveal higher-order patterns. These findings may ultimately help define tertiary structure restraints for RNA tertiary structure prediction. A complete annotation of the RNA diagrams for our data set is available at http://www.biomath.nyu.edu/motifs/.  相似文献   

14.
GuhaThakurta D  Draper DE 《Biochemistry》1999,38(12):3633-3640
Comparative sequence analysis has successfully predicted secondary structure and tertiary interactions in ribosomal and other RNAs. Experiments presented here ask whether the scope of comparative sequence-based predictions can be extended to specific interactions between proteins and RNA, using as a system the well-characterized C-terminal RNA binding domain of ribosomal protein L11 (L11-C76) and its 58 nucleotide binding region in 23S rRNA. The surface of L11-C76 alpha-helix 3 is known to contact RNA; position 69 in this helix is conserved as serine in most organisms but varies to asparagine (all plastids) or glutamine (Mycoplasma). RNA sequence substitutions unique to these groups of organisms occur at base pairs 1062/1076 or 1058/1080, respectively. The possibility that rRNA base pair substitutions compensate for variants in L11 alpha-helix 3 has been tested by measuring binding affinities between sets of protein and RNA sequence variants. Stability of the RNA tertiary structure, as measured by UV melting experiments, was unexpectedly affected by a 1062/1076 base pair substitution; additional mutations were required to restore a stably folded structure to this RNA. The results show that the asparagine variant of L11-C76 residue 69 has been compensated by substitution of a 1062/1076 base pair, and plausibly suggest a direct contact between the amino acid and base pair. For some of the protein and RNA mutations studied, changes in binding affinity probably reflect longer-range adjustments of the protein-RNA contact surface.  相似文献   

15.
The sequence of the 247 nucleotide residues of the single strand circular RNA of avocado sunblotch viroid (ASBV) was determined using partial enzymic cleavage methods on overlapping viroid fragments obtained by partial ribonuclease digestion followed by 32p-labelling in vitro at their 5'-ends. ASBV is much smaller than potato spindle tuber viroid (PSTV; 359 residues) and chrysanthemum stunt viroid (CSV; 356 residues). A secondary structure model for ASBV is proposed and contains 67% of its residues base paired. In contrast to the extensive (69%) sequence homology of CSV with PSTV, only 18% of the ASBV sequence is homologous to PSTV and CSV. There are eight potential polypeptide translation products with chain lengths from 4 to 63 amino acid residues coded for by the plus (infectious) strand and four potential translation products (2 to 60 residues) coded for by the minus strand. An improved method is described for the synthesis of gamma-32p-ATP of high specific activity.  相似文献   

16.
17.
A bioinformatic covariation analysis of a collection of 119 novel variants of the antigenomic, self-cleaving hepatitis delta virus (HDV) RNA motif supported the formation of all of the Watson–Crick base pairs (bp) of the catalytic centre except the C19–G81 pair located at the bottom of the P2 stem. In fact, a novel Watson–Crick bp between C19 and G80 is suggested by the data. Both chemical and enzymatic probing demonstrated that initially the C19–G81 pair is formed in the ribozyme (Rz), but upon substrate (S) binding and the formation of the P1.1 pseudoknot C19 switches its base-pairing partner from G81 to G80. As a result of this finding, the secondary structure of this ribozyme has been redrawn. The formation of the C19–G80 bp results in a J4/2 junction composed of four nucleotides, similar to that seen in the genomic counterpart, thereby increasing the similarities between these two catalytic RNAs. Additional mutagenesis, cleavage activity and probing experiments yield an original characterization of the structural features involving the residues of the J4/2 junction.  相似文献   

18.
Human immunodeficiency virus type 1 (HIV-1) requires a programmed -1 ribosomal frameshift to produce Gag-Pol, the precursor of its enzymatic activities. This frameshift occurs at a slippery sequence on the viral messenger RNA and is stimulated by a specific structure, downstream of the shift site. While in group M, the most abundant HIV-1 group, the frameshift stimulatory signal is an extended bulged stem-loop, we show here, using a combination of mutagenesis and probing studies, that it is a pseudoknot in group O. The mutagenesis and probing studies coupled to an in silico analysis show that group O pseudoknot is a hairpin-type pseudoknot with two coaxially stacked stems of eight base-pairs (stem 1 and stem 2), connected by single-stranded loops of 2nt (loop 1) and 20nt (loop 2). Mutations impairing formation of stem 1 or stem 2 of the pseudoknot reduce frameshift efficiency, whereas compensatory changes that allow re-formation of these stems restore the frameshift efficiency to near wild-type level. The difference between the frameshift stimulatory signal of group O and group M supports the hypothesis that these groups originate from a different monkey to human transmission.  相似文献   

19.
20.
How viroids, tiny non-protein-coding RNAs (~250-400 nt), incite disease is unclear. One hypothesis is that viroid-derived small RNAs (vd-sRNAs; 21-24 nt) resulting from the host defensive response, via RNA silencing, may target for cleavage cell mRNAs and trigger a signal cascade, eventually leading to symptoms. Peach latent mosaic viroid (PLMVd), a chloroplast-replicating viroid, is particularly appropriate to tackle this question because it induces an albinism (peach calico, PC) strictly associated with variants containing a specific 12-14-nt hairpin insertion. By dissecting albino and green leaf sectors of Prunus persica (peach) seedlings inoculated with PLMVd natural and artificial variants, and cloning their progeny, we have established that the hairpin insertion sequence is involved in PC. Furthermore, using deep sequencing, semi-quantitative RT-PCR and RNA ligase-mediated rapid amplification of cDNA ends (RACE), we have determined that two PLMVd-sRNAs containing the PC-associated insertion (PC-sRNA8a and PC-sRNA8b) target for cleavage the mRNA encoding the chloroplastic heat-shock protein 90 (cHSP90), thus implicating RNA silencing in the modulation of host gene expression by a viroid. Chloroplast malformations previously reported in PC-expressing tissues are consistent with the downregulation of cHSP90, which participates in chloroplast biogenesis and plastid-to-nucleus signal transduction in Arabidopsis. Besides PC-sRNA8a and PC-sRNA8b, both deriving from the less-abundant PLMVd (-) strand, we have identified other PLMVd-sRNAs potentially targeting peach mRNAs. These results also suggest that sRNAs derived from other PLMVd regions may downregulate additional peach genes, ultimately resulting in other symptoms or in a more favorable host environment for viroid infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号