首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
The aim of the present study was to determine whether the mycorrhiza helper bacterium Streptomyces sp. AcH 505 could serve as a biocontrol agent against Heterobasidion root and butt rot. Bacterial influence on mycelial growth of Heterobasidion sp. isolates, on the colonization of wood discs and Norway spruce (Picea abies) roots was determined. The effect of AcH 505 on plant photosynthesis, peroxidase activity and gene expression, and needle infections were investigated. AcH 505 was antagonistic to 11 of 12 tested fungal Heterobasidion isolates. The antagonism resulted in a suppression of fungal colonization of Norway spruce roots and wood discs. Mycelial growth rate of the 12th strain, Heterobasidion abietinum 331 was not affected by AcH 505, and colonization of roots by this fungal strain was promoted by AcH 505. Bacterial inoculation led to decreased peroxidase activities and gene expression levels in roots. AcH 505 promotes plant root colonization by Heterobasidion strains that are tolerant to antifungal metabolites produced by the bacterium. This may result from unknown bacterial factors that suppress the plant defence response.  相似文献   

3.
In this study, we investigate the relationship between γ-PGA productivity and biocontrol capacity of Bacillus subtilis BsE1; one bacterial isolate displayed 62.14% biocontrol efficacy against Fusarium root rot. The γ-PGA yield assay, motility assay, wheat root colonization assay, and biological control assay were analysed in different γ-PGA yield mutants of BsE1. The pgsB (PGA-synthase-CapB gene) deleted mutant of BsE1 reduced γ-PGA yield and exhibited apparent decline of in vitro motile ability. Deletion of pgsB impaired colonizing capacity of BsE1 on wheat root in 30 days, also lowered biocontrol efficacies from 62.08% (wild type BsE1) to 14.22% in greenhouse experiment against Fusarium root rot. The knockout of pgdS and ggt (genes relate to two γ-PGA degrading enzymes) on BsE1, leads to a considerable improvement in polymer yield and biocontrol efficacy, which attains higher level compared with wild type BsE1. Compared with ΔpgsB mutant, defense genes related to reactive oxygen species (ROS) and phytoalexin expressed changes by notable levels on wheat roots treated with BsE1, demonstrating the functional role γ-PGA plays in biocontrol against Fusarium root rot. γ-PGA is not only important to the motile and plant root colonization ability of BsE1, but also essential to the biological control performed by BsE1 against Fusarium root rot. Our goal in this study is to reveals a new perspective of BCAs screening on bacterial isolates, without good performance during pre-assays of antagonism ability.  相似文献   

4.
Pseudomonas strain AN5 (Ps. str. AN5), a non-fluorescent Australian bacterial isolate, is an effective biological control (biocontrol) agent of the take-all disease of wheat caused by the fungus Gaeumannomyces graminis var. tritici (Ggt). Ps. str. AN5 controls Ggt by producing an antifungal compound which was purified by thin layer and column chromatography, and identified by NMR and mass spectroscopic analysis to be d-gluconic acid. Commercially bought pure gluconic acid strongly inhibited Ggt. Two different transposon mutants of Ps. str. AN5 which had lost take-all biocontrol did not produce d-gluconic acid. Gluconic acid production was restored, along with take-all biocontrol, when one of these transposon mutants was complemented with the corresponding open reading frame from wild-type genomic DNA. Gluconic acid was detected in the rhizosphere of wheat roots treated with the wild-type Ps. str. AN5, but not in untreated wheat or wheat treated with a transposon mutant strain which had lost biocontrol. The antifungal compounds phenazine-1-carboxylic acid and 2,4-diacetylphloroglucinol, produced by other Pseudomonads and previously shown to be effective in suppressing the take-all disease, were not detected in Ps. str. AN5 extracts. These results suggest that d-gluconic acid is the most significant antifungal agent produced by Ps. str. AN5 in biocontrol of take-all on wheat roots.  相似文献   

5.
Aim: This study was undertaken to study bacterial strains obtained directly for their efficient direct control of the avocado white root rot, thus avoiding prescreening by any other possible mechanism of biocontrol which could bias the selection. Methods and Results: A collection of 330 bacterial isolates was obtained from the roots and soil of healthy avocado trees. One hundred and forty‐three representative bacterial isolates were tested in an avocado/Rosellinia test system, resulting in 22 presumptive protective strains, all of them identified mainly as Pseudomonas and Bacillus species. These 22 candidate strains were screened in a more accurate biocontrol trial, confirming protection of some strains (4 out of the 22). Analyses of the potential bacterial traits involved in the biocontrol activity suggest that different traits could act jointly in the final biocontrol response, but any of these traits were neither sufficient nor generalized for all the active bacteria. All the protective strains selected were antagonistic against some fungal root pathogens. Conclusions: Diverse bacteria with biocontrol activity could be obtained by a direct plant protection strategy of selection. All the biocontrol strains finally selected in this work were antagonistic, showing that antagonism is a prevalent trait in the biocontrol bacteria selected by a direct plant protection strategy. Significance and Impact of the Study: This is the first report on the isolation of biocontrol bacterial strains using direct plant protection strategy in the system avocado/Rosellinia. Characterization of selected biocontrol bacterial strains obtained by a direct plant protection strategy showed that antagonism is a prevalent trait in the selected strains in this experimental system. This suggests that antagonism could be used as useful strategy to select biocontrol strains.  相似文献   

6.
Pseudomonas fluorescens strain CHA0 and its antibiotic overproducing derivative CHA0/pME3424 repeatedly reduced Meloidogyne incognita galling on tomato, brinjal, mungbean and soya bean roots but not in chilli. An antibiotic‐deficient derivative, CHA89, did not reduce nematode invasion in any of the plant species tested. When plant species were compared, bacterial inoculants afforded better protection to tomato, mungbean and soya bean roots against root‐knot nematodes than to brinjal and chilli. Antibiotic overproducing strain CHA0/pME3424 markedly reduced fresh shoot weights of chilli and mungbean while antibiotic‐deficient strain CHA89 enhanced fresh shoot weights of mungbean. While strains CHA0 had no significant impact on fresh root weights of any of the plant species, strain CHA0/pME3424 consistently reduced fresh root weights of brinjal and mungbean. In none of the plant species the bacterial strains had an influence on protein contents of the leaves. Regardless of the plant species, the three bacterial strains did not differ markedly in their rhizosphere colonization pattern. However, colonization was highest in brinjal rhizosphere and lowest in the mungbean rhizosphere. A slight host genotype effect on the biocontrol performance of the bacterial inoculants was also detected at cultivar level. When five soya bean cultivars were compared, biocontrol bacteria exhibited best suppression of the root‐knot nematode in cv. Ajmeri. Antibiotic overproducing strain CHA0/pME3424 substantially reduced fresh shoot weights of the soya bean cultivars Centuray 84 and NARC‐I while strain CHA89 enhanced shoot weights of the cultivars Ajmeri, William‐82 and NARC‐II. Wild type strain CHA0 had no significant impact on fresh shoot weights of any of the soya bean cultivars. Strain CHA0/pME3424 reduced fresh weights of root of Century 84, NARC‐I and NARC‐II while strain CHA89 increased root weights. Bacterial rhizosphere colonization was highest in variety NARC‐I and lowest in variety Ajmeri. Plant age had a significant impact on the biocontrol performance of bacterial inoculants against nematodes. The biocontrol effect of all bacterial strains was more prominent during early growth stage (7 days after nematode inoculation). A strong negative correlation between bacterial rhizosphere colonization and nematode invasion in soya bean roots was observed.  相似文献   

7.
8.
To monitor the colonization of wheat roots by Azospirillum brasilense, we constructed several plasmids based on the pBBR1 replicon expressing the gfp and gusA genes constitutively. Both genes were placed under control of the gentamycin resistance gene promoter resulting in high levels of expression in Escherichia coli and A. brasilense. The constructed plasmids were stably maintained in A. brasilense strains even in the absence of selective pressure. The colonization of wheat plants grown under controlled conditions in sterilized vermiculite by A. brasilense strain FP2 (a Sp7-derivative) transconjugants containing these plasmids was monitored. Bacteria expressing GFP were easily observed in fresh plant material by fluorescence microscopy. Cell aggregates and single bacteria were visualized on the surfaces of young root zones, such as roots hairs and lateral roots. Large cellular clumps were observed at the points of lateral root emergence or at intercellular spaces of root epidermal cells 30 days after inoculation. Although we failed to detected bacteria in internal cortical and xylem tissues of wheat roots, the initial stage of endophytic colonization by A. brasilense may involve the sites detected in this work.  相似文献   

9.
10.
Arbuscular mycorrhiza (AM) is established by the entry of AM fungi into the host plant roots and the formation of symbiotic structures called arbuscules. The host plant supplies photosynthetic products to the AM fungi, which in return provide phosphate and other minerals to the host through the arbuscules. Both partners gain great advantages from this symbiotic interaction, and both regulate AM development. Our recent work revealed that gibberellic acids (GAs) are required for AM development in the legume Lotus japonicus. GA signaling interact with symbiosis signaling pathways, directing AM fungal colonization in host roots. Expression analysis showed that genes for GA biosynthesis and metabolism were induced in host roots around AM fungal hyphae, suggesting that the GA signaling changes with both location and time during AM development. The fluctuating GA concentrations sometimes positively and sometimes negatively affect the expression of AM-induced genes that regulate AM fungal infection and colonization.  相似文献   

11.
Trichoderma harzianum is an effective biocontrol agent against several fungal soilborne plant pathogens. However, possible adverse effects of this fungus on arbuscular mycorrhizal fungi might be a drawback in its use in plant protection. The objective of the present work was to examine the interaction between Glomus intraradices and T. harzianum in soil. The use of a compartmented growth system with root-free soil compartments enabled us to study fungal interactions without the interfering effects of roots. Growth of the fungi was monitored by measuring hyphal length and population densities, while specific fatty acid signatures were used as indicators of living fungal biomass. Hyphal 33P transport and beta-glucuronidase (GUS) activity were used to monitor activity of G. intraradices and a GUS-transformed strain of T. harzianum, respectively. As growth and metabolism of T. harzianum are requirements for antagonism, the impact of wheat bran, added as an organic nutrient source for T. harzianum, was investigated. The presence of T. harzianum in root-free soil reduced root colonization by G. intraradices. The external hyphal length density of G. intraradices was reduced by the presence of T. harzianum in combination with wheat bran, but the living hyphal biomass, measured as the content of a membrane fatty acid, was not reduced. Hyphal 33P transport by G. intraradices also was not affected by T. harzianum. This suggests that T. harzianum exploited the dead mycelium but not the living biomass of G. intraradices. The presence of external mycelium of G. intraradices suppressed T. harzianum population development and GUS activity. Stimulation of the hyphal biomass of G. intraradices by organic amendment suggests that nutrient competition is a likely means of interaction. In conclusion, it seemed that growth of and phosphorus uptake by the external mycelium of G. intraradices were not affected by the antagonistic fungus T. harzianum; in contrast, T. harzianum was adversely affected by G. intraradices.  相似文献   

12.
Among soil microorganisms, yeasts have received little attention as biocontrol agents of soil-borne fungal plant pathogens in comparison to bacterial, actinomycetes, and filamentous fungal antagonists. The mechanisms of action of potential antagonism by yeasts in relation to soil-borne fungal plant pathogens are expected to be similar to those involved with pathogens of aerial parts of the plant, including leaves and fruits. Several taxa of yeasts have been recorded as endophytes in plants, with a small proportion recorded to promote plant growth. The ability of certain taxa of yeasts to multiply rapidly, to produce antibiotics and cell wall-degrading enzymes, to induce resistance of host tissues, and to produce plant growth regulators indicates the potential to exploit them as biocontrol agents and plant growth promoters. More than ten genera of yeasts have been used to control postharvest diseases, especially of fruits. Suppression of classes of fungal pathogens of fruits and foliage that are similar to those associated with soil-borne fungal root pathogens, strongly suggests that yeasts also have potential for the biological control of diseases caused by soil-borne fungal plant pathogens, as is evident in reports of certain yeasts in suppressing some soil-borne fungal plant pathogens. This review explores the potential of soil yeasts to suppress a wider range of soil-borne fungal plant pathogens and to promote plant growth.  相似文献   

13.
在土壤微宇宙系统内及田间土壤中,采用发不酶基因标记检测技术研究了荧光假单胞菌(Pseudomonas fluorescens,简称Pf)X16L2在小麦根圈的定殖动态,研究结果表明:在不同灭菌灰潮土微宇宙中,Pf.X16L2在小麦播种后36d定殖密度可达最高水平(3.2*10^4cfu.g^-1根),然后开始下降,最后保持在一个相对稳定的较低水平(约3.2*10^2cfu.g^-1根))。在田间条  相似文献   

14.
Pseudomonas alcaligenes AVO73 and Pseudomonas pseudoalcaligenes AVO110 were selected previously as efficient avocado root tip colonizers, displaying in vitro antagonism towards Rosellinia necatrix, causal agent of avocado white root rot. Despite the higher number of antagonistic properties shown in vitro by AVO73, only AVO110 demonstrated significant protection against avocado white root rot. As both strains are enhanced root colonizers, and as colonization is crucial for the most likely biocontrol mechanisms used by these strains, namely production of non-antibiotic antifungal compounds and competition for nutrients and niches, we decided to compare the interactions of the bacterial strains with avocado roots as well as with R. necatrix hyphae. The results indicate that strain AVO110 is superior in biocontrol trait swimming motility and establishes on the root tip of avocado plants faster than AVO73. Visualization studies, using Gfp-labelled derivatives of these strains, showed that AVO110, in contrast to AVO73, colonizes intercellular crevices between neighbouring plant root epidermal cells, a microhabitat of enhanced exudation. Moreover, AVO110, but not AVO73, also colonizes root wounds, described to be preferential penetration sites for R. necatrix infection. This result strongly suggests that AVO110 meets, and can attack, the pathogen on the root. Finally, when co-inoculated with the pathogen, AVO110 utilizes hyphal exudates more efficiently for proliferation than AVO73 does, and colonizes the hyphae more abundantly than AVO73. We conclude that the differences between the strains in colonization levels and strategies are likely to contribute to, and even can explain, the difference in disease-controlling abilities between the strains. This is the first report that shows that two similar bacterial strains, selected by their ability to colonize avocado root, use strongly different root colonization strategies and suggests that in addition to the total bacterial root colonization level, the sites occupied on the root are important for biocontrol.  相似文献   

15.
Increasingly, focus has been directed towards the use of microorganisms as biological control agents to combat fungal disease, as an alternative to chemical fungicides. Pseudomonas fluorescens SBW25 is one bacterial strain that has been demonstrated to promote plant growth by biocontrol of pathogenic fungi. To understand the mode of action of this bacterium, information regarding its localization and metabolic activity on plants is important. In this study, a gfp/luxAB-tagged derivative of P. fluorescens SBW25, expressing the green fluorescent protein (GFP) and bacterial luciferase, was monitored during colonization of wheat starting from seed inoculation. Since bacterial luciferase is dependent on cellular energy reserves for phenotypic expression, metabolically active cells were detected using this marker. In contrast, the stable GFP fluorescence phenotype was used to detect the cells independently of their metabolic status. The combination of these two markers enabled P. fluorescens SBW25 cells to be monitored on wheat plants to determine their specific location and metabolic activity. Studies on homogenized wheat plant parts demonstrated that the seed was the preferred location of P. fluorescens SBW25 during the 65-day time period studied, but the leaves and roots were also colonized. Interestingly, the bacteria were also found to be metabolically active on all plant parts examined. In situ localization of P. fluorescens SBW25 using a combination of different microscopic techniques confirmed the preference for the cells to colonize specific regions of the seed. We speculate that the colonization pattern of P. fluorescens SBW25 can be linked to the mechanism of protection of plants from fungal infection.  相似文献   

16.
The presence of root tissue of the brassicas canola and Indian mustard inhibited growth of pure cultures of the fungal pathogen which causes take-all of wheat [Gaeumannomyces graminis (Sacc.) Arx and Oliver var.tritici, abbreviated as Ggt]. Ggt growth was generally inhibited more in the presence of Indian mustard roots than canola roots. Dried irradiated roots were consistently effective in reducing Ggt growth, but growth inhibition by young live roots and macerated roots was not consistent. The inhibitory compound(s) were shown to be volatile because the symmetry of Ggt growth was not affected by the proximity of theBrassica tissue. Volatile breakdown products from maceratedBrassica roots were identified using a gas chromatograph-mass spectrometer. The major compounds found were isothiocyanates (ITCs). Canola roots released mostly methyl ITC and Indian mustard roots released mostly phenylethyl ITC. Low concentrations of these and related compounds inhibited growth of Ggt in pure culture when supplied as the vapour of pure chemicals in concentrations within the range expected during breakdown ofBrassica roots in soil.  相似文献   

17.
Fusarium oxysporum, a major soil-borne fungal pathogen, causes vascular wilt, damping-off, and root rot diseases on over 100 cultivated plant species. Mechanisms of root colonization by F. oxysporum in Arabidopsis thaliana were studied through in planta 3-dimensional time-lapse documentation using confocal and multi-photon microscopy. Data from individual encounter sites were acquired repeatedly over a several day period without physical manipulation or retrieval from the growth chamber. In vivo observations were facilitated by transformation of F. oxysporum for constitutive cytoplasmic expression of the fluorescent protein ZsGreen, and host responses were monitored using autofluorescence or GFP-tagged endoplasmic reticulum. Penetration into the vascular system occurred primarily in the meristematic region of primary and lateral roots. Fungal hyphae may release phytotoxin(s) that compromise host cells not directly in contact with hyphae. This novel approach was essential for visualizing the dynamic interactions between F. oxysporum and A. thaliana from both the host and pathogen sides.  相似文献   

18.
19.
The use of indigenous bacterial root endophytes with biocontrol activity against soil-borne phytopathogens is an environmentally-friendly and ecologically-efficient action within an integrated disease management framework. The earliest steps of olive root colonization by Pseudomonas fluorescens PICF7 and Pseudomonas putida PICP2, effective biocontrol agents (BCAs) against Verticillium wilt of olive (Olea europaea L.) caused by the fungus Verticillium dahliae Kleb., are here described. A gnotobiotic study system using in vitro propagated olive plants, differential fluorescent-protein tagging of bacteria, and confocal laser scanning microscopy analysis have been successfully used to examine olive roots–Pseudomonas spp. interactions at the single-cell level. In vivo simultaneous visualization of PICF7 and PICP2 cells on/in root tissues enabled to discard competition between the two bacterial strains during root colonization. Results demonstrated that both BCAs are able to endophytically colonized olive root tissues. Moreover, results suggest a pivotal role of root hairs in root colonization by both biocontrol Pseudomonas spp. However, colonization of root hairs appeared to be a highly specific event, and only a very low number of root hairs were effectively colonized by introduced bacteria. Strains PICF7 and PICP2 can simultaneously colonize the same root hair, demonstrating that early colonization of a given root hair by one strain did not hinder subsequent attachment and penetration by the other. Since many environmental factors can affect the number, anatomy, development, and physiology of root hairs, colonization competence and biocontrol effectiveness of BCAs may be greatly influenced by root hair’s fitness. Finally, the in vitro study system here reported has shown to be a suitable tool to investigate colonization processes of woody plant roots by microorganisms with biocontrol potential.  相似文献   

20.
The root-to-root travel of the beneficial bacterium Azospirillum brasilense on wheat and soybean roots in agar, sand, and light-textured soil was monitored. We used a motile wild-type (Mot+) strain and a motility-deficient (Mot-) strain which was derived from the wild-type strain. The colonization levels of inoculated roots were similar for the two strains. Mot+ cells moved from inoculated roots (either natural or artificial roots in agar, sand, or light-textured soil) to noninoculated roots, where they formed a band-type colonization composed of bacterial aggregates encircling a limited part of the root, regardless of the plant species. The Mot- strain did not move toward noninoculated roots of either plant species and usually stayed at the inoculation site and root tips. The effect of attractants and repellents was the primary factor governing the motility of Mot+ cells in the presence of adequate water. We propose that interroot travel of A. brasilense is an essential preliminary step in the root-bacterium recognition mechanism. Bacterial motility might have a general role in getting Azospirillum cells to the site where firmer attachment favors colonization of the root system. Azospirillum travel toward plants is a nonspecific active process which is not directly dependent on nutrient deficiency but is a consequence of a nonspecific bacterial chemotaxis, influenced by the balance between attractants and possibly repellents leaked by the root.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号