首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Bai M  Yang GS  Chen WT  Mao ZC  Kang HX  Chen GH  Yang YH  Xie BY 《Gene》2012,501(1):52-62
Dicer, Argonaute and RNA-dependent RNA polymerase form the core components to trigger RNA silencing. Although tomato (Solanum lycopersicum) is a dicotyledon model plant, no systematic analysis and expression profiling of these genes in tomato has been undertaken previously. In this study, seven Dicer-like (SlDCLs), 15 Argonaute (SlAGOs) and six RNA-dependent RNA polymerase (SlRDRs) genes were identified in tomato. These genes were categorized into four subgroups based on phylogenetic analyses. Comprehensive analyses of gene structure, genomic localization and similarity among these genes were performed. Their expression patterns were investigated by means of expression models in different tissues and organs using online data and semi-quantitative RT-PCR. Many of the candidate genes were up-regulated in response to Tomato yellow leaf curl virus infection and abiotic stresses. The expression models of tandem gene duplications among SlDCL2s indicated the DCL2 family plays an important role in the evolution of tomato.  相似文献   

2.
3.
4.
5.
RNA-silencing mechanisms control many aspects of gene regulation including the detection and degradation of viral RNA through the action of, among others, Dicer-like and Argonaute (AGO) proteins. However, the extent to which RNA silencing restricts virus host range has been difficult to separate from other factors that can affect virus-plant compatibility. Here we show that Potato virus X (PVX) can infect Arabidopsis (Arabidopsis thaliana), which is normally a nonhost for PVX, if coinfected with a second virus, Pepper ringspot virus. Here we show that the pepper ringspot virus 12K protein functions as a suppressor of silencing that appears to enable PVX to infect Arabidopsis. We also show that PVX is able to infect Arabidopsis Dicer-like mutants, indicating that RNA silencing is responsible for Arabidopsis nonhost resistance to PVX. Furthermore, we find that restriction of PVX on Arabidopsis also depends on AGO2, suggesting that this AGO protein has evolved to specialize in antiviral defenses.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
Zhang X  Zhang X  Singh J  Li D  Qu F 《Journal of virology》2012,86(12):6847-6854
While RNA silencing is a potent antiviral defense in plants, well-adapted plant viruses are known to encode suppressors of RNA silencing (VSR) that can neutralize the effectiveness of RNA silencing. As a result, most plant genes involved in antiviral silencing were identified by using debilitated viruses lacking silencing suppression capabilities. Therefore, it remains to be resolved whether RNA silencing plays a significant part in defending plants against wild-type viruses. We report here that, at a higher plant growth temperature (26°C) that permits rigorous replication of Turnip crinkle virus (TCV) in Arabidopsis, plants containing loss-of-function mutations within the Dicer-like 2 (DCL2), Argonaute 2 (AGO2), and HEN1 RNA methyltransferase genes died of TCV infection, whereas the wild-type Col-0 plants survived to produce viable seeds. To account for the critical role of DCL2 in ensuring the survival of wild-type plants, we established that higher temperature upregulates the activity of DCL2 to produce viral 22-nucleotide (nt) small interfering RNAs (vsRNAs). We further demonstrated that DCL2-produced 22-nt vsRNAs were fully capable of silencing target genes, but that this activity was suppressed by the TCV VSR. Finally, we provide additional evidence supporting the notion that TCV VSR suppresses RNA silencing through directly interacting with AGO2. Together, these results have revealed a specialized RNA silencing pathway involving DCL2, AGO2, and HEN1 that provides the host plants with a competitive edge against adapted viruses under environmental conditions that facilitates robust virus reproduction.  相似文献   

14.
Phytophthora infestans is a devastating phytopathogenic oomycete that causes late blight on tomato and potato. Recent genome sequencing efforts of P. infestans and other Phytophthora species are generating vast amounts of sequence data providing opportunities to unlock the complex nature of pathogenesis. However, accurate annotation of Phytophthora genomes will be a significant challenge. Most of the information about gene structure in these species was gathered from a handful of genes resulting in significant limitations for development of ab initio gene-calling programs. In this study, we collected a total of 150 bioinformatically determined near full-length cDNA (FLcDNA) sequences of P. infestans that were predicted to contain full open reading frame sequences. We performed detailed computational analyses of these FLcDNA sequences to obtain a snapshot of P. infestans gene structure, gauge the degree of sequence conservation between P. infestans genes and those of Phytophthora sojae and Phytophthora ramorum, and identify patterns of gene conservation between P. infestans and various eukaryotes, particularly fungi, for which genome-wide translated protein sequences are available. These analyses helped us to define the structural characteristics of P. infestans genes using a validated data set. We also determined the degree of sequence conservation within the genus Phytophthora and identified a set of fast evolving genes. Finally, we identified a set of genes that are shared between Phytophthora and fungal phytopathogens but absent in animal fungal pathogens. These results confirm that plant pathogenic oomycetes and fungi share virulence components, and suggest that eukaryotic microbial pathogens that share similar lifestyles also share a similar set of genes independently of their phylogenetic relatedness.  相似文献   

15.
Wu X  Shi Z  Cui M  Han M  Ruvkun G 《PLoS genetics》2012,8(3):e1002542
The retinoblastoma (Rb) tumor suppressor acts with a number of chromatin cofactors in a wide range of species to suppress cell proliferation. The Caenorhabditis elegans retinoblastoma gene and many of these cofactors, called synMuv B genes, were identified in genetic screens for cell lineage defects caused by growth factor misexpression. Mutations in many synMuv B genes, including lin-35/Rb, also cause somatic misexpression of the germline RNA processing P granules and enhanced RNAi. We show here that multiple small RNA components, including a set of germline-specific Argonaute genes, are misexpressed in the soma of many synMuv B mutant animals, revealing one node for enhanced RNAi. Distinct classes of synMuv B mutants differ in the subcellular architecture of their misexpressed P granules, their profile of misexpressed small RNA and P granule genes, as well as their enhancement of RNAi and the related silencing of transgenes. These differences define three classes of synMuv B genes, representing three chromatin complexes: a LIN-35/Rb-containing DRM core complex, a SUMO-recruited Mec complex, and a synMuv B heterochromatin complex, suggesting that intersecting chromatin pathways regulate the repression of small RNA and P granule genes in the soma and the potency of RNAi. Consistent with this, the DRM complex and the synMuv B heterochromatin complex were genetically additive and displayed distinct antagonistic interactions with the MES-4 histone methyltransferase and the MRG-1 chromodomain protein, two germline chromatin regulators required for the synMuv phenotype and the somatic misexpression of P granule components. Thus intersecting synMuv B chromatin pathways conspire with synMuv B suppressor chromatin factors to regulate the expression of small RNA pathway genes, which enables heightened RNAi response. Regulation of small RNA pathway genes by human retinoblastoma may also underlie its role as a tumor suppressor gene.  相似文献   

16.
17.
18.
19.
Dicer is a ribonuclease III-like enzyme playing a key role in the RNA silencing pathway. Genome sequencing projects have demonstrated that eukaryotic genomes vary in the numbers of Dicer-like (DCL) proteins from one (human) to four (Arabidopsis). Two DCL genes, MDL-1 and -2 (Magnaporthe Dicer-like-1 and -2) have been identified in the genome of the filamentous fungus Magnaporthe oryzae. Here we show that the knockout of MDL-2 drastically impaired gene silencing of enhanced green fluorescence protein by hairpin RNA and reduced related small interfering RNA (siRNA) accumulation to nondetectable levels. In contrast, mutating the other DCL, MDL-1, exhibited a gene silencing frequency similar to wild type and accumulated siRNA normally. The silencing-deficient phenotype and loss of siRNA accumulation in the mdl-2 mutant was restored by genetic complementation with the wild-type MDL-2 allele. These results indicate that only MDL-2 is responsible for siRNA production, and no functional redundancy exists between MDL-1 and MDL-2 in the RNA silencing pathway in M. oryzae. Our findings contrast with a recent report in the filamentous fungus Neurospora crassa, where two DCL proteins are redundantly involved in the RNA silencing pathway, but are similar to the results obtained in a more distantly related organism, Drosophila melanogaster, where an individual DCL protein has a distinct role in the siRNA/micro-RNA pathways.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号