首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The non-histone proteins HMG-1, HMG-2, HMG-3, HMB-8, HMG-14, and HMG-17 (Goodwin, G. H., SANDERS, C., and Johns, E. W. (1973) Eur. J. Biochem. 38, 14) were purified from calf thymus. The apparent molecular weights on polyacrylamide gels run in the presence of sodium dodecyl sulfate of the high mobility group (HMB) proteins were determined. Those for HBG-1 and HMG-2 agreed with the molecular weights determined by sedimentation; that for HMG-17 was anomalously high. Antibodies against HMG-1 were elicited in rabbits. The interaction between HMG-1 and anti-HBG-1 was measured by quantitative precipitation and by the microcomplement fixation technique. Quantitative microcomplement fixation assays revealed that the indices of dissimilarity between HMG-1 and HMG-2, HMG-3, HMG-8, HMG-14, and HMG-17 were 2.0, 1.0, 3.8, 10.0, and 6.1, respectively. These correspond to 6%, 0%, 12%, 20%, and 16% sequence difference between HMG-1 and the other five HMG proteins, although the immunological distance between HMG-1 and HMG-14 may be too large to allow a good correlation between the sequence and the immunological reaction. Antibodies to HMB-1 bind to chromatin purified from calf thymus. Therefore, we suggest that the in situ organization of HMG proteins in chromatin and chromosomes may be studied by serological techniques.  相似文献   

4.
This brief review provides a framework for discussing current approaches being used to determine the cellular localization and function of the high mobility group chromosomal (HMG) proteins. The four main constituents of this group (HMG 1, 2, 14, 17) are present in all four eukaryotic kingdoms, have a relatively well conserved primary sequence and contain several functional domains which enable them to interact with DNA, histones and other components of the genome. The evolutionary conservation in the primary and tertiary structure as well as the observed correlations between cell phenotype and quantitative changes in protein levels and in post-synthesis modifications suggests that these proteins are components obligatory for proper cellular function. Proteins HMG 1, 2 are DNA-binding proteins which can distinguish between various types of single-stranded regions of the genome. Proteins HMG 14, 17 may be involved in maintaining specific chromatin regions in particular conformations. The data available presently suggests that these proteins are important structural elements of chromatin and chromosomes.  相似文献   

5.
A dramatic difference is observed in the intracellular distribution of the high mobility group (HMG) proteins when chicken embryo fibroblasts are fractionated into nucleus and cytoplasm by either mass enucleation of cytochalasin-B-treated cells or by differential centrifugation of mechanically disrupted cells. Nuclei (karyoplasts) obtained by cytochalasin B treatment of cells contain more than 90 percent of the HMG 1, while enucleated cytoplasts contain the remainder. A similar distribution between karyoplasts and cytoplasts is observed for the H1 histones and the nucleosomal core histones as anticipated. The presence of these proteins, in low amounts, in the cytoplast preparation can be accounted for by the small percentage of unenucleated cells present. In contrast, the nuclei isolated from mechanically disrupted cells contain only 30-40 percent of the total HMGs 1 and 2, the remainder being recovered in the cytosol fraction. No histone is observed in the cytosol fraction. Unike the higher molecular weight HMGs, most of the HMGs 14 and 17 sediment with the nuclei after cell lysis by mechanical disruption. The distribution of HMGs is unaffected by incubating cells with cytochalasin B and mechanically fractionating rather than enucleating them. Therefore, the dramatic difference in HMG 1 distribution observed using the two fractionation techniques cannot be explained by a cytochalasin-B-induced redistribution. On reextraction and sedimentation of isolated nuclei obtained by mechanical cell disruption, only 8 percent of the HMG 1 is released to the supernate. Thus, the majority of the HMG 1 originally isolated with these nuclei, representing 35 percent of the total HMG 1, is stably bound, as is all the HMGs 14 and 17. The remaining 65 percent of the HMGs 1 and 2 is unstably bound and leaks to the cytosol fraction under the conditions of mechanical disruption. It is suggested that the unstably bound HMGs form a protein pool capable of equilibrating between cytoplasm and stably bound HMGs.  相似文献   

6.
The quantitative tissue specificity of the high mobility group (HMG) chromosomal proteins was investigated. Perchloric acid (PCA) extracts of four different chicken tissues and erythrocytes contained three proteins which comigrated on NaDodSO4-polyacrylamide gels with the HMG's 1,2, and E from erythrocyte nuclei. These three HMG's from embryonic skeletal muscle and erythrocytes also comigrated on two-dimensional gels, employing an acid-urea system in the first dimension and an NaDodSO4 system in the second. Interpretation of the two-dimensional gels suggested that the two low molecular weight proteins of this triplet arose from the HMG 2 band of the acid-urea gels. These have been designated HMG 2A and HMG 2B. Three proteins of similar molecular weights were also found in the PCA extracts of calf thymus. They were arranged in a similar but not identical pattern on two-dimensional gels. Thus, these three HMG's appear to be neither tissue nor species specific. In addition, the 2.0% PCA extracts of all chicken tissues examined contain a 38 000-dalton (38K) nuclear protein which coisolates with the HMG's. These four proteins are found in different relative amounts in each of the four chicken tissues and erythrocytes. They are found in the same relative amounts, however, in embryonic skeletal muscles from different chicken strains with widely different highly repetitive sequence content, suggesting that none of these individual proteins is selectively localized to constitutive heterochromatin. The quantitative tissue specificity of the HMG's and the 38K protein, however, suggests that they may participate in regulating cell-specific gene expression.  相似文献   

7.
8.
The non-histone chromosomal protein of the high mobility group (HMG-1) present in mouse liver was purified to homogeneity. Antibodies against this protein as well as pure HMG-1 derived from calf thymus and HMG-E purified from duck erythrocytes were elicited in rabbits. The interaction between the antibodies and the immunogens was measured by passive hemoagglutination and by quantitative microcomplement fixation. Quantitative microcomplement fixation assays revealed that the immunological distance between HMG-1 from calf thymus and HMG-1 from mouse liver and duck erythrocytes was 15. This corresponds to 3% sequence differences. It was estimated that amino acid substitution occurred at about seven positions in the polypeptide chain. Thus, HMG-1 proteins display remarkable evolutionary conservation in their primary sequence, similar to that displayed by histones H4 and H3, suggesting that their biological function is dependent on stringent structural requirements. HMG-E protein is significantly different from both HMG-1 and HMG-2 derived from calf thymus. As such, it is a protein unique to avian erythrocytes.  相似文献   

9.
The high mobility group (HMG) chromosomal proteins may modulate the structure of distinct regions in chromatin, thereby affecting processes such as development and differentiation. Here we report that the levels of the HMG chromosomal proteins and their mRNAs change significantly during erythropoiesis. Erythroid cells from 5-day chicken embryos contain 2.5-10 times more HMG mRNAs than cells from 14-day embryos, whereas circulating cells from adult animals are devoid of HMG and most other mRNAs. Nuclear run-off experiments and Northern analysis of RNA from various developmental stages and from Percoll-fractionated cells indicate that the genes are transcribed in early cells of either the primitive or definitive erythroid lineage. The rate of synthesis of the various HMGs changes during erythropoiesis; in erythroid cells from 7-day embryos the ratio of HMG-14b or HMG-17 to HMG-14a is, respectively, 8 and 10 times lower than in 9-day erythroids. HMG-14a, the major chicken HMG-14 species, is synthesized mainly in primitive cells, while HMG-14b is preferentially synthesized in definitive cells. Thus, the change from primitive to definitive erythroid lineage during embryogenesis is accompanied by a change in the expression of HMG chromosomal proteins. Conceivably, these changes may affect the structure of certain regions in chromatin; however, it is not presently clear whether the switch in HMG protein gene expression is a consequence or a prerequisite for proper differentiation.  相似文献   

10.
Antigenic determinants of high mobility group chromosomal proteins 1 and 2   总被引:1,自引:0,他引:1  
The antigenic determinants of nonhistone high mobility group chromosomal proteins 1 (HMG-1) and 2 (HMG-2) were studied with rabbit antisera elicited against HMG-1 and against HMG-2 and monoclonal antibodies elicited by HMG-1. The monoclonal antibodies did not distinguish between the two proteins, suggesting that they have specificity toward a shared determinant. Whereas anti-HMG-1 did not, anti-HMG-2 did distinguish between the proteins, suggesting that the anti-HMG-2 serum contains antibodies against peptides which differ between the proteins. Peptides were generated from HMG-1 and HMG-2 by controlled digestion with trypsin and pepsin. Analysis of the digests by ELISA and by sodium dodecyl sulfate electrophoresis followed by diazobenzyloxymethyl transfer, antibody binding and autoradiography revealed that most of the antibodies are against sequential determinants some of which are smaller than 3000 in molecular weight.  相似文献   

11.
We have subjected proteins dissociated from chicken erythrocyte or calf thymus chromatin by 0.35 M NaCl to sequential chromatography on columns containing immobilized double-stranded DNA and single-stranded DNA. At 0.2 M NaCl, 1 mM Tris . Cl (pH 7.5), the high molecular weight, high mobility group proteins (HMG-1, HMG-2, and HMG-E), were not retained by double-stranded DNA columns, but were retained by single-stranded DNA columns. Thus, in that solvent, those proteins exhibit selective affinity for single-stranded DNA. This suggests that the functions of the high molecular weight, high mobility group proteins might involve destabilizing the DNA double helix by virtue of their preferential affinity for single-stranded DNA.  相似文献   

12.
We have used an electrophoretic retardation assay to investigate the interactions of wheat high mobility group (HMG) proteins with DNA and with isolated trimmed mononucleosomes (complexes which contain a histone octamer and approximately 146 base pairs of DNA). In order to characterize these interactions, we have compared the binding of each of the wheat HMG proteins, HMGa, b, c, and d, with those of the low molecular weight chicken HMG proteins HMG14 and 17. These vertebrate animal HMG proteins have previously been shown to occupy two specific binding sites on animal nucleosomes and to have a greater affinity for nucleosomes than for naked DNA (Mardian, J. K. W., Paton, A. E., Bunick, G. J., and Olins, D. E. (1980) Science 209, 1534-1536; Sandeen, G., Wood, W. I., and Felsenfeld, G. (1980) Nucleic Acids Res. 8, 3757-3778). As a criterion for "specific binding," we have used the property of HMG14 and 17 binding of causing a discontinuous shift of nucleosomes to a distinct band of lower electrophoretic mobility. According to this criterion, wheat HMGb, c, and d do not bind nucleosomes specifically. These HMG proteins have approximately the same affinity for nucleosomes and naked DNA. Wheat HMGa does bind nucleosomes specifically by this criterion, but other aspects of the binding are reminiscent of histone H1-nucleosome binding. We present evidence that trimmed mononucleosomes of wheat are conformationally distinct from their animal counterparts. Despite the conformational differences, competition studies indicate that chicken and wheat mononucleosomes have essentially identical affinity for the low molecular weight animal HMG proteins.  相似文献   

13.
Two chromosomal high mobility group (HMG) proteins from larvae of Chironomus thummi (Diptera) and from an epithelial cell line of Chironomus tentans were purified to homogeneity and chemically characterized. cDNA clones encoding these proteins were isolated from an expression library using an immunoscreening approach and were sequenced. The deduced amino acid sequences revealed their homology to HMG protein 1 of vertebrates. These insect proteins have therefore been designated cHMG1a and cHMG1b. They have a molecular mass of 12,915 and 12,019 kDa, respectively, and preferentially bind to AT-rich DNA. Indirect immunofluorescence microscopy with a polyclonal antibody showed the presence of cHMG1a and cHMG1b in condensed chromomeres but not in puffs, nucleoli, and cytoplasm. The cHMG1a and cHMG1b genes were both localized to a single band in region 14 of chromosome 1 of C. tentans and appear to be single copy genes. An immunologically related protein was purified from Drosophila melanogaster Kc cells. Its size and amino acid composition indicate that it is an HMG1 of D. melanogaster. On the other hand, our antibody did not recognize calf HMG1. The identification and characterization of HMG1 proteins in insects with polytene chromosomes opens new possibilities for studying function(s) of this group of chromosomal proteins.  相似文献   

14.
High mobility group (HMG) nonhistone chromosomal proteins have been shown to exist also in the ciliated protozoan Tetrahymena pyriformis. One or two histone-like components were extracted with 0.25 M HCl from the chromatin, in addition to five histone species. These proteins were also extracted selectively with 0.5 M HClO4, 0.35 M NaCl, or 4 mM spermidine, together with H1 histone, and were characterized as HMG proteins on the basis of the following criteria: high mobilities on polyacrylamide gel electrophoresis, relatively low molecular weights, amino acid compositions rich in lysine and glutamic acid, and relative contents in chromatin. This extends the distribution of the HMG proteins to all four eukaryotic kingdoms, and suggests the possibility that they have some universal role in chromatin structure and function.  相似文献   

15.
Monomer nucleosomes released from nuclei during brief micrococcal nuclease digestions are enriched in transcribed sequences (Bloom and Anderson, 1978). These nucleosomes are depleted in H1 and enriched in three high mobility group proteins HMG14, HMG17 and another HMG-like protein. Analysis of such nucleosomes by polyacrylamide gel electrophoresis reveal that they are heterogenous. Similarly, monomer nucleosomes soluble in 0.1 M NaCl separate on polyacrylamide gels into mainly two types of particle, one of which has HMG14 and HMG17 bound. However, the DNA of the HMG-nucleosomes from chick erythrocytes is not enriched in globin sequences, suggesting that protein rearrangement may have occurred.  相似文献   

16.
It has been almost a decade since the last review appeared comparing and contrasting the influences that the different families of High Mobility Group proteins (HMGA, HMGB and HMGN) have on the various DNA repair pathways in mammalian cells. During that time considerable progress has been made in our understanding of how these non-histone proteins modulate the efficiency of DNA repair by all of the major cellular pathways: nucleotide excision repair, base excision repair, double-stand break repair and mismatch repair. Although there are often similar and over-lapping biological activities shared by all HMG proteins, members of each of the different families appear to have a somewhat ‘individualistic’ impact on various DNA repair pathways. This review will focus on what is currently known about the roles that different HMG proteins play in DNA repair processes and discuss possible future research areas in this rapidly evolving field.  相似文献   

17.
Chromatographic fractionation on CM-Sephadex of a 0.35 M NaCl extract from calf thymus chromatin reveals the presence of a High Mobility Group (HMG) protein which comigrates electrophoretically with HMG-17. Further amino acid analysis and partial sequence determination suggest that this protein is a proteolytic degradation product of either HMG-1 or HMG-2 from which the acidic C-terminal region has been removed.  相似文献   

18.
19.
Turnover of N-methyl groups in non-histone chromosomal (NHC) and high mobility group (HMG) proteins from chinese hamster ovary cell nuclei was compared with that of the peptide backbone. Cells grown with tritiated amino-acids and methionine (Me-14C) were resuspended in unlabeled medium, and aliquots removed at 4 time points. Halflives were calculated from the decay of the respective specific activities by the method of least squares. Ratios of halflives for 14C and 3H calculated from the first order rate decay curves of the specific activities were shown to be close to unity.  相似文献   

20.
The novel phase II antitumor polynuclear platinum drug BBR3464 ([(trans-PtCl(NH(3))(2))(2)(mu-trans-Pt(NH(3))(2)(NH(2)(CH(2))(6)NH(2))(2))](NO(3))(4)) forms intra- and interstrand cross-links (CLs) on DNA (which is the pharmacological target of platinum drugs). We examined first in our recent work how various intrastrand CLs of BBR3464 affect the conformation of DNA and its recognition by cellular components (Zehnulova, J., Kasparkova, J., Farrell, N., and Brabec, V. (2001) J. Biol. Chem. 276, 22191-22199). In the present work, we have extended the studies on the DNA interstrand CLs of this drug. The results have revealed that the interstrand CLs are preferentially formed between guanine residues separated by 2 base pairs in both the 3' --> 3' and 5' --> 5' directions. The major 1,4-interstrand CLs distort DNA, inducing a directional bending of the helix axis and local unwinding of the duplex. Although such distortions represent a potential structural motif for recognition by high mobility group proteins, these proteins do not recognize 1,4-interstrand CLs of BBR3464. On the other hand, in contrast to intrastrand adducts of BBR3464, 1,4-interstrand CLs are not removed from DNA by nucleotide excision repair. It has been suggested that interstrand CLs of BBR3464 could persist considerably longer in cells compared with intrastrand adducts, which would potentiate the toxicity of the interstrand lesions to tumors sensitive to this polynuclear drug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号