首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A novel enzymatic photometric assay for ethanol determination using alcohol oxidase and peroxidase is described. The sensitivity of the method allows detecting ethanol in biological fluids (saliva and blood serum). Secondary alcohols and other organic compounds do not interfere with the assay. General-purpose spectrophotometers and photoelectric colorimeters can be used in the measurements. Methanol and propanol can also be determined by this technique.  相似文献   

2.
A novel enzymatic photometric assay for ethanol determination using alcohol oxidase and peroxidase is described. The sensitivity of the method allows detecting ethanol in biological fluids (saliva and blood serum). Secondary alcohols and other organic compounds do not interfere with the assay. General-purpose spectrophotometers and photoelectric colorimeters can be used in the measurements. Methanol and propanol can also be determined by this technique.  相似文献   

3.
The effect of intraliposomal ADP and ATP on the kinetics of cytochrome c oxidation in reconstituted bovine heart cytochrome c oxidase was measured by the photometric and polarographic method: 1. Intraliposomal ADP decreases and intraliposomal ATP increases the Km for cytochrome c when measured by the photometric assay under uncoupled conditions. 2. The above described effects are not obtained when the kinetics are measured with the polarographic assay. 3. Extraliposomal ATP increases the Km for cytochrome c similar to intraliposomal ATP, but this effect is measured with both methods of assay. 4. Under coupled conditions only a small decrease of the Km for cytochrome c by intraliposomal ADP is found.  相似文献   

4.
Bovine heart cytochrome-c oxidase was reconstituted in liposomes and the kinetics of cytochrome c oxidation were measured by the polarographic and photometric method under uncoupled conditions in the presence of various polyvalent anions. In order to distinguish between specific and unspecific ionic effects of ATP, the photolabelling reagent 8-azido-ATP was applied. Covalently bound ATP at the enzyme complex caused the same increase of Km for cytochrome c as free ATP, if measured by the photometric assay. The increase of Km by photolabelling with 8-azido-ATP was completely prevented by ATP, but not by ADP. The data indicate the occurrence of a specific binding site for ATP at the cytosolic side of cytochrome-c oxidase, which, after binding of ATP, changes the kinetics of cytochrome c oxidation.  相似文献   

5.
A method is described for manufacturing crude alcohol oxidase (EC 1.1.3.13) preparations which are suitable for application in colorimetric alcohol assays. The procedure involves a one-step removal of catalase activity from a partially purified preparation of alcohol oxidase from the yeast Hansenula polymorpha via dialysis against 3-amino-1,2,4-triazole and hydrogen peroxide. Thus, the irreversible inactivation of more than 90% of the catalase present was achieved, which is prerequisite for the use of alcohol oxidase preparations in colorimetric alcohol assays via peroxidase-mediated oxidation of dyes. This type of assay was shown to be rapid, accurate and sensitive. The influence of the relative concentrations of the various assay constituents such as alcohol oxidase, catalase and peroxidase is discussed. It is concluded that this colorimetric alcohol assay is particularly suitable for the determination of ethanol in fermentation broths, both in qualitative and in quantitative tests.  相似文献   

6.
A gene encoding a eugenol oxidase was identified in the genome from Rhodococcus sp. strain RHA1. The bacterial FAD-containing oxidase shares 45% amino acid sequence identity with vanillyl alcohol oxidase from the fungus Penicillium simplicissimum. Eugenol oxidase could be expressed at high levels in Escherichia coli, which allowed purification of 160 mg of eugenol oxidase from 1 L of culture. Gel permeation experiments and macromolecular MS revealed that the enzyme forms homodimers. Eugenol oxidase is partly expressed in the apo form, but can be fully flavinylated by the addition of FAD. Cofactor incorporation involves the formation of a covalent protein-FAD linkage, which is formed autocatalytically. Modeling using the vanillyl alcohol oxidase structure indicates that the FAD cofactor is tethered to His390 in eugenol oxidase. The model also provides a structural explanation for the observation that eugenol oxidase is dimeric whereas vanillyl alcohol oxidase is octameric. The bacterial oxidase efficiently oxidizes eugenol into coniferyl alcohol (KM=1.0 microM, kcat=3.1 s-1). Vanillyl alcohol and 5-indanol are also readily accepted as substrates, whereas other phenolic compounds (vanillylamine, 4-ethylguaiacol) are converted with relatively poor catalytic efficiencies. The catalytic efficiencies with the identified substrates are strikingly different when compared with vanillyl alcohol oxidase. The ability to efficiently convert eugenol may facilitate biotechnological valorization of this natural aromatic compound.  相似文献   

7.
The standard photometric method for the determination of oxidase enzyme activity is compared with an electro-chemical approach, involving the use of cheap, disposable screen-printed electrodes. Development and characterisation of the electrochemical device is reported. The electrochemical approach is demonstrated to be advantageous, particularly with regard to speed, ease-of-use, chemicals required and decentralisation of analysis.  相似文献   

8.
A procedure is described for the qualitative direct identification of alcohol oxidase, alcohol dehydrogenase, and formaldehyde dehydrogenase in yeast colonies. The method has been applied successfully to isolate mutants of Hansenula polymorpha with altered glucose repression of alcohol oxidase.  相似文献   

9.
An electrochemical method for the investigation and comparison of anti-Alzheimer medications that is based on the inhibition of the acetylcholinesterase is presented. The developed amperometric biosensor determines the in-vitro inhibition of the acetylcholinesterase that is co-immobilized with choline oxidase on the working electrode surface of a three-electrode system using gel entrapment. The sensor has been applied to determine the IC50 values of two known and one newly developed Alzheimer remedy. A simultaneous measurement with the photometric standard method shows the applicability of our method for fast drug screening.  相似文献   

10.
The properties of extracellular L-glutamate oxidase isolated and purified from Streptomycessp. Z-11-6 (specific activity, 50.8 U/mg protein; yield, 40%) were studied. A photometric method of determination of activities of alanine and aspartate aminotransferases based on the use of L-glutamate oxidase and peroxidase has been developed. This method is sufficiently sensitive to be used for determining aminotransferase activities in biological fluids. The presence of other amino acids does not interfere with the analysis and has no effect on the results of determination.  相似文献   

11.
This report describes the microinjection of a purified peroxisomal protein, alcohol oxidase, from Pichia pastoris into mammalian tissue culture cells and the subsequent transport of this protein into vesicular structures. Transport was into membrane-enclosed vesicles as judged by digitonin-permeabilization experiments. The transport was time and temperature dependent. Vesicles containing alcohol oxidase could be detected as long as 6 d after injection. Coinjection of synthetic peptides containing a consensus carboxyterminal tripeptide peroxisomal targeting signal resulted in abolition of alcohol oxidase transport into vesicles in all cell lines examined. Double-label experiments indicated that, although some of the alcohol oxidase was transported into vesicles that contained other peroxisomal proteins, the bulk of the alcohol oxidase did not appear to be transported to preexisting peroxisomes. While the inhibition of transport of alcohol oxidase by peptides containing the peroxisomal targeting signal suggests a competition for some limiting component of the machinery involved in the sorting of proteins into peroxisomes, the organelles into which the majority of the protein is targeted appear to be unusual and distinct from endogenous peroxisomes by several criteria. Microinjected alcohol oxidase was transported into vesicles in normal fibroblasts and also in cell lines derived from patients with Zellweger syndrome, which are unable to transport proteins containing the ser-lys-leu-COOH peroxisomal targeting signal into peroxisomes (Walton et al., 1992). The implications of this result for the mechanism of peroxisomal protein transport are discussed.  相似文献   

12.
The amperometric biosensor for ethanol determination based on alcohol oxidase immobilised by the method of electrochemical polymerization has been developed. The industrial screen-printed platinum electrodes were used as transducers for creation of amperometric alcohol biosensor. Optimal conditions for electrochemical deposition of an active membrane with alcohol oxidase has been determined. Biosensors are characterised by good reproducibility and operational stability with minimal detection limit of ethanol 8 x 10(-5) M. The good correlation of results for ethanol detection in wine and during wine fermentation by using the developed amperometric biosensor with the data obtained by the standard methods was shown (r = 0.995).  相似文献   

13.
Candida cloacae长链脂肪酸醇氧化酶基因的克隆与表达   总被引:3,自引:0,他引:3  
Candidacloacae是利用链烃和长链脂肪酸作为碳源来生长的一种工业酵母 .长链脂肪酸在单加氧酶作用下 ,使远离羧基的甲基羟化 ,生成ω 羟脂肪酸 .后者在生物体中通过两条连续的氧化通路进行氧化 (ω氧化通路和 β氧化通路 ) .醇氧化酶是ω氧化通路中的重要组成酶 ,它可以催化链烃或长链脂肪酸分子中的羟基氧化为醛基 ,后者再经其它酶氧化为羧基 .长链脂肪酸通过ω氧化通路生成二羧基化合物 ,它可作为重要的化工原料 ,广泛应用于香料、多聚酰胺、多聚酯、胶类和环内酯抗生素的生成[1] .ω氧化通路中产生的羧基化合物再经 β 氧…  相似文献   

14.
A fromaldehyde oxidase activity was found in cellfree extracts of methanol-grown yeast Candida boidinii. Loss of alcohol oxidase activity in a mutant, 48, led to loss of the formaldehyde oxidase activity, indicating that the same enzyme is probably responsible for both activities. This could be demonstrated with the purified alcohol oxidase which oxidizes, besides lower primary alcohols, formaldehyde to formate. The Km value for formaldehyde is 5.7 mM. It seems that alcohol oxidase is not implicated in formaldehyde oxidation in vivo.  相似文献   

15.
Mutants exhibiting alcohol oxidase (EC 1.1.3.13) activity when grown on glucose in the presence of methanol were found among 2-deoxyglucose-resistant mutants derived from a methanol yeast, Candida boidinii A5. One of these mutants, strain ADU-15, showed the highest alcohol oxidase activity in glucose-containing medium. The growth characteristics and also the induction and degradation of alcohol oxidase were compared with the parent strain and mutant strain ADU-15. In the parent strain, initiation of alcohol oxidase synthesis was delayed by the addition of 0.5% glucose to the methanol medium, whereas it was not delayed in mutant strain ADU-15. This showed that alcohol oxidase underwent repression by glucose. On the other hand, degradation of alcohol oxidase after transfer of the cells from methanol to glucose medium (catabolite inactivation) was observed to proceed at similar rates in parent and mutant strains. The results of immunochemical titration experiments suggest that catabolite inactivation of alcohol oxidase is coupled with a quantitative change in the enzyme. Mutant strain ADU-15 was proved to be a catabolite repression-insensitive mutant and to produce alcohol oxidase in the presence of glucose. However, it was not an overproducer of alcohol oxidase and, in both the parent and mutant strains, alcohol oxidase was completely repressed by ethanol.  相似文献   

16.
We have introduced into Hansenula polymorpha an extra copy of its alcohol oxidase gene. This gene which is under the control of the Saccharomyces cerevisiae phosphoglycerate kinase promoter is integrated in a chromosome different from the one containing the endogenous gene. Cells with the extra alcohol oxidase gene, grown on glucose or ethanol as the sole carbon source, express enzymatically active alcohol oxidase. However, other enzymes characteristic for methylotrophic growth conditions are absent or present at low levels. Most of the alcohol oxidase occurs in the octameric state and immuno- and cytochemical evidence shows that it is located in a single enlarged peroxisome per cell. Such peroxisomes show crystalloid inclusions which are lacking in the peroxisomes present in glucose grown control cells. Our results suggest that import into peroxisomes of H. polymorpha, assembly and activation of alcohol oxidase is not conditionally dependent on adaptation to methylotrophic growth conditions and that proliferation of peroxisomes is a well-programmed process that is not triggered solely by overproduction of a peroxisomal protein.  相似文献   

17.
Immobilization of tyrosinase and alcohol oxidase is achieved in the copolymer of pyrrole with vinyl alcohol with thiophene side groups (PVATh-co-PPy) which is a newly synthesized conducting polymer. PVATh-co-PPy/alcohol oxidase and PVATh-co-PPy/tyrosinase electrodes are constructed by the entrapment of enzyme in conducting copolymer matrix during electrochemical copolymerization. For tyrosinase and alcohol oxidase enzymes, catechol and ethanol are used as the substrates, respectively. Kinetic parameters: maximum reaction rates (V(max)) and Michaelis-Menten constants (K(m)) are obtained. V(max) and K(m) are found as 2.75 micromol/(minelectrode) and 18 mM, respectively, for PVATh-co-PPy/alcohol oxidase electrode and as 0.0091micromol/(minelectrode) and 40 mM, respectively, for PVATh-co-PPy/tyrosinase electrode. Maximum temperature and pH values are investigated and found that both electrodes have a wide working range with respect to both temperature and pH. Operational and storage stabilities show that although they have limited storage stabilities, the enzyme electrodes are useful with respect to operational stabilities.  相似文献   

18.
B Distel  M Veenhuis    H F Tabak 《The EMBO journal》1987,6(10):3111-3116
Saccharomyces cerevisiae is unable to grow on methanol because it lacks the enzymes required for its metabolism. To study the possibility of whether or not the methanol oxidation pathway of Hansenula polymorpha can be transferred to S. cerevisiae, the gene coding for alcohol oxidase, a peroxisomal homo-octameric flavoprotein, was introduced into S. cerevisiae. Transformed cells contain varying amounts of alcohol oxidase depending on the plasmid used. Immunocytochemical experiments indicate that the protein is imported into peroxisomes, whether organelle proliferation is induced or not. Cells lack alcohol oxidase activity however, and only the monomeric, non-functional, form of the protein is found. These findings indicate that the H. polymorpha peroxisomal targeting signal of alcohol oxidase is recognized in S. cerevisiae and protein monomers are imported.  相似文献   

19.
This paper presents a simple method to fabricate a microfluidic biosensor that is able to detect substrates for H(2)O(2)-generating oxidase. The biosensor consists of three components (quantum dot-enzyme conjugates, hydrogel microstructures, and a set of microchannels) that were hierarchically integrated into a microfluidic device. The quantum dot (QD)-enzyme conjugates were entrapped within the poly(ethylene glycol) (PEG)-based hydrogel microstructures that were fabricated within the microchannels by a photopatterning process. Glucose oxidase (GOX) and alcohol oxidase (AOX) were chosen as the model oxidase enzymes, conjugated to carboxyl-terminated CdSe/ZnS QDs, and entrapped within the hydrogel microstructures, which resulted in a fluorescent hydrogel microarray that was responsive to glucose or alcohol. The hydrogel-entrapped GOX and AOX were able to perform enzyme-catalyzed oxidation of glucose and alcohol, respectively, to produce H(2)O(2), which subsequently quenched the fluorescence of the conjugated QDs. The fluorescence intensity of the hydrogel microstructures decreased as the glucose and alcohol concentrations increased, and the detection limits of this system were found to be 50 μM of glucose and 70 μM of alcohol. Because each microchannel was able to carry out different assays independently, the simultaneous detection of glucose and alcohol was possible using our novel microfluidic device composed of multiple microchannels.  相似文献   

20.
Yeast microbodies containing FAD-dependent alcohol oxidase, catalase and D-amino acid oxidase were isolated from methanol-grown cells of Kloeckera sp. 2201 and immobilized intact in matrices formed by a short-time illumination of photo-crosslinkable resin oligomers. The relative activities of catalase, alcohol oxidase and D-amino acid oxidase of the gel-entrapped microbodies were 36, 76 and 31% respectively as compared with those of free microbodies. Immobilization enhance d the stability of catalase to a certain degree, but not that of alcohol oxidase. The pH/activity profiles of catalase and alcohol oxidase of the entrapped organelles showed more narrow pH optima than those of the free counterparts. D-Amino acid oxidase in immobilized microbodies showed a somewhat higher Km value for D-alanine than that in free ones. Immobilized microbodies oxidized two moles of methanol to form two moles of formaldehyde with consumption of one mole of molecular oxygen. Addition of 3-amino-1,2,4-triazole, an inhibitor of catalase, reduced the formation of formaldehyde to half the amount without change in the amount of oxygen consumed, indicating the synergic action of alcohol oxidase and catalase in methanol oxidation in the microbodies of living yeast cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号