首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With the smooth move towards the coming expected clinical reports of anticancer pharmaceutical molecules targeting telomeres and telomerase, and also with the exciting success in the extension of lifespan by regulating telomerase activity without increased onset of oncogenesis in laboratory mouse models (Garcia-Cao et al., 2006; Jaskelioff et al., 2011), we are convinced that targeting telomeres based on telomerase will be a potential approach to conquer both aging and cancer and the idea of longevity seems to be no more mysterious. More interestingly, emerging evidences from clinical research reveal that other telomeric factors, like specifi c telomeric binding proteins and nonspecific telomere associated proteins also show crucial importance in aging and oncogenesis. This stems from their roles in the stability of telomere structure and in the inhibition of DNA damage response at telomeres. Uncapping these proteins from chromosome ends leads to dramatic telomere loss and telomere dysfunction which is more abrupt than those induced by telomerase inactivation. Abnormal expression of these factors results in developmental failure, aging and even oncogenesis evidenced by several experimental models and clinical cases, indicating telomere specifi c proteins and its associated proteins have complimentary roles to telomerase in telomere protection and controlling cellular fate. Thus, these telomeric factors might be potential clinical biomarkers for early detection or even therapeutic targets of aging and cancer. Future studies to elucidate how these proteins function in telomere protection might benefit patients suffering aging or cancer who are not sensitive to telomerase mediation.  相似文献   

2.
Stem cell research holds a promise to treat and prevent age-related degenerative changes in humans. Literature is replete with studies showing that stem cell function declines with aging, especially in highly proliferative tissues/organs. Among others, telomerase and telomere damage is one of the intrinsic physical instigators that drive age-related degenerative changes. In this review we provide brief overview of telomerase-deficient aging affects in diverse stem cells populations. Furthermore, potential disease phenotypes associated with telomerase dysregulation in a specific stem cell population is also discussed in this review. Additionally, the role of telomerase in stem cell driven cancer is also briefly touched upon.  相似文献   

3.
Modeling aging and cancer in the telomerase knockout mouse   总被引:2,自引:0,他引:2  
Chang S 《Mutation research》2005,576(1-2):39-53
The telomerase deficient mouse has been invaluable in providing insights into basic questions pertaining to consequences of telomere dysfunction during aging and cancer in the context of the mammalian organism. Studies using this mouse model have demonstrated that cellular responses to telomere dysfunction are fundamentally conserved in both humans and mice, and that the tight regulation of telomere length and telomerase activity in somatic cells may be important in mediating the balance between aging and cancer. Here, I discuss the use of the telomerase null mouse for understanding the contrasting roles of telomeres and telomerase in organismal aging and cancer.  相似文献   

4.
The analysis of model systems has broadened our understanding of telomere-related aging processes. Telomerase-deficient mouse models have demonstrated that telomere dysfunction impairs tissue renewal capacity and shortens lifespan. Telomere shortening limits cell proliferation by activating checkpoints that induce replicative senescence or apoptosis. These checkpoints protect against an accumulation of genomically instable cells and cancer initiation. However, the induction of these checkpoints can also limit organ homeostasis, regeneration, and survival during aging and in the context of diseases. The decline in tissue regeneration in response to telomere shortening has been related to impairments in stem cell function. Telomere dysfunction impairs stem cell function by activation of cell-intrinsic checkpoints and by the induction of alterations in the micro- and macro-environment of stem cells. In this review, we discuss the current knowledge about the impact of telomere shortening on disease stages induced by replicative cell aging as indicated by studies on telomerase model systems.  相似文献   

5.
端粒、端粒酶与细胞衰老   总被引:4,自引:0,他引:4  
端粒和端粒酶是现代生物学研究的热点,端粒的缺失与细胞的衰老,端粒酶的活性与细胞的老化及癌化均有密切的关系。章综述了端粒和端粒酶的结构和功能,及其与细胞衰老的关系,并在此基础之上展望了端粒酶在抗衰老、抑制肿瘤等方面的应用。  相似文献   

6.
7.
Telomeres are the special heterochromatin that forms the ends of chromosomes, consisting of TTAGGG repeats and associated proteins. Telomeres protect the ends from degradation and recombination, and are essential for chromosomal stability. Both a minimal length of telomere repeats and the telomere-binding proteins are required for telomere protection. Telomerase is a DNA polymerase that specifically elongates telomeres, in this way regulating telomere length and function. A minimal telomere length is required to maintain tissue homeostasis. On one hand, critically short telomeres trigger loss of cell viability and premature death in mice deficient for telomerase activity. Furthermore, altered functioning of telomerase and telomere-interacting proteins is present in some human premature ageing syndromes and cancer. A new mouse model with critically short telomeres has been generated by over-expressing the TRF2 telomere-binding protein, K5-TRF2 mice. These mice show short telomeres in the presence of telomerase activity, leading to premature aging and increased cancer. Short telomeres in TRF2 mice can be rescued in the absence of the XPF nuclease, indicating that this enzyme rapidly degrades telomeres in the presence of increased TRF2 expression. K5-TRF2 mice represent a new tool to understand the consequences of critical telomere shortening a telomerase-proficient genetic background, more closely resembling human cancer and aging pathologies.  相似文献   

8.
The DNA repair proteins poly(ADP-ribose) polymerase-1 (PARP-1), Ku86, and catalytic subunit of DNA-PK (DNA-PKcs) have been involved in telomere metabolism. To genetically dissect the impact of these activities on telomere function, as well as organismal cancer and aging, we have generated mice doubly deficient for both telomerase and any of the mentioned DNA repair proteins, PARP-1, Ku86, or DNA-PKcs. First, we show that abrogation of PARP-1 in the absence of telomerase does not affect the rate of telomere shortening, telomere capping, or organismal viability compared with single telomerase-deficient controls. Thus, PARP-1 does not have a major role in telomere metabolism, not even in the context of telomerase deficiency. In contrast, mice doubly deficient for telomerase and either Ku86 or DNA-PKcs manifest accelerated loss of organismal viability compared with single telomerase-deficient mice. Interestingly, this loss of organismal viability correlates with proliferative defects and age-related pathologies, but not with increased incidence of cancer. These results support the notion that absence of telomerase and short telomeres in combination with DNA repair deficiencies accelerate the aging process without impacting on tumorigenesis.  相似文献   

9.
Telomere length and telomerase activity are important factors in the pathobiology of human diseases. Age-related diseases and premature aging syndromes are characterized by short telomeres, which can compromise cell viability, whereas tumour cells can prevent telomere loss by aberrantly upregulating telomerase. The zebrafish (Danio rerio) offers multiple experimental manipulation advantages over other vertebrate models and, therefore, it has been recently considered as a potential model for aging, cancer, and regeneration studies. However, it has only partially been exploited to shed light on these fundamental biological processes. The aim of this study was, therefore, to investigate telomere length and telomerase expression and activity in different strains of zebrafish obtained from different stock centres to determine whether they undergo any changes during aging and regeneration. We found that although both telomerase expression and telomere length increased from embryo to adulthood stages, they drastically declined in aged fish despite telomerase activity was detected in different tissues of old fish. In addition, we observed a weaker upregulation of telomerase expression in regenerating fins of old fish, which well correlates with their impaired regeneration capacity. Strikingly, telomeres were elongated or maintained during the fin regeneration process at all ages and after repeated amputations, likely to support high cell proliferation rates. We conclude that the expression of telomerase and telomere length are closely related during the entire life cycle of the fish and that these two parameters can be used as biomarkers of aging in zebrafish. Our results also reveal a direct relationship between the expression of telomerase, telomere length and the efficiency of tissue regeneration.  相似文献   

10.
Telomere dysfunction in aging and cancer   总被引:5,自引:0,他引:5  
Telomeres are unique DNA-protein structures that contain noncoding TTAGGG repeats and telomere-associated proteins. These specialized structures are essential for maintaining genomic integrity. Alterations that lead to the disruption of telomere maintenance result in chromosome end-to-end fusions and/or ends being recognized as double-strand breaks. A large body of evidence suggests that the cell responds to dysfunctional telomeres by undergoing senescence, apoptosis, or genomic instability. In conjunction with other predisposing mechanisms, the genomic instability encountered in preimmortal cells due to dysfunctional or uncapped telomeres might lead to cancer. Furthermore, telomere dysfunction has been proposed to play critical roles in aging as well as cancer progression. Conversely, recent evidence has shown that targeting telomere maintenance mechanisms and inducing telomere dysfunction in cancer cells by inhibiting telomerase can lead to catastrophic events including rapid cell death and increased sensitivity to other cancer therapeutics. Thus, given the major role telomeres play during development, it is important to continue our understanding telomere structure, function and maintenance. Herein, we provide an overview of the emerging knowledge of telomere dysfunction and how it relates to possible links between aging and cancer.  相似文献   

11.
Mammalian telomeres are formed by tandem repeats of the TTAGGG sequence bound by a specialized six‐protein complex known as shelterin, which has fundamental roles in the regulation of telomere length and telomere capping. In the past, the study of mice genetically modified for telomerase components has been instrumental to demonstrate the role of telomere length in cancer and aging. Recent studies using genetically modified mice for shelterin proteins have highlighted an equally important role of telomere‐bound proteins in cancer and aging, even in the presence of proficient telomerase activity and normal telomere length. In this review, we will focus on recent findings, suggesting a role of shelterin components in cancer and aging.  相似文献   

12.
The maintenance of telomeres, nucleoprotein structures that constitute the ends of eukaryotic chromosomes, regulates many crucial cellular functions and might, in multicellular organisms, participate in the control of complex phenotypes such as aging and cancer. Stabilization of telomere length is strongly associated with cellular immortalization, and constitutive telomerase activation occurs in most human cancers. Such observations form the basis for the prevailing model that postulates that alterations in telomere biology both suppress and facilitate malignant transformation by regulating genomic stability and cell life span. However, recent findings suggest that telomere maintenance might not be an obligate requirement for initial tumor formation in some settings and that telomerase activation contributes to tumorigenesis independently of its role in maintaining telomere length. These recent developments indicate that our understanding of telomere biology remains incomplete and implicate additional complexity in the relationships among telomeres, telomerase and cancer.  相似文献   

13.
Telomerase contributes to cell proliferation and survival through both telomere‐dependent and telomere‐independent mechanisms. In this report, we discovered that endoplasmic reticulum (ER) stress transiently activates the catalytic components of telomerase (TERT) expression in human cancer cell lines and murine primary neural cells. Importantly, we show that depletion of hTERT sensitizes cells to undergo apoptosis under ER stress, whereas increased hTERT expression reduces ER stress‐induced cell death independent of catalytically active enzyme or DNA damage signaling. Our findings establish a functional link between ER stress and telomerase, both of which have important implications in the pathologies associated with aging and cancer.  相似文献   

14.
15.
16.
美国加州大学旧金山分校的伊丽莎白·布莱克本(Elizabeth H. Blackburn)、约翰·霍普金斯医学院的卡罗尔·格雷德(Carol W. Greider)和马萨诸塞州总医院的杰克·绍斯塔克(Jack W. Szostak),因为“发现端粒和端粒酶如何保护染色体”,而获得2009年度诺贝尔奖生理学或医学奖。这个结果已在很多人的意料之中。因为端粒和端粒酶的发现揭示了线性染色体末端复制的机制,以及端粒和端粒酶在保护染色体及维持遗传稳定性中的中心作用。端粒和端粒酶的发现为科学家认识并探索衰老和肿瘤的发生机制开辟了新领域,对预防和治疗衰老及与衰老相关的疾病(如肿瘤)具有重要科学和应用意义。  相似文献   

17.
Telomere and telomerase dynamics in human cells   总被引:3,自引:0,他引:3  
Accumulating evidence now implicates telomeres and telomerase as critical regulators genomic stability and replicative lifespan in mammalian cells. Disruption of telomere maintenance and/or telomerase expression contributes to the etiology of some degenerative diseases and may participate in the process of aging. Although telomere dysfunction and aberrant telomerase expression clearly play important roles in cancer development, the contribution of telomere biology to cancer is complex and involves both positive and negative influences on tumor development. Indeed, recent work from several laboratories suggests additional roles for telomeres and telomerase in both normal and malignant physiology. Understanding the complexity of telomere biology will provide further insights into chromosome biology in both normal and malignant cells.  相似文献   

18.
Telomeres are nucleoprotein complexes that cap the ends of all linear chromosomes and function to prevent aberrant repair and end-to-end chromosome fusions. In somatic cells, telomere shortening is a natural part of the aging process as it occurs with each round of cell division. In germ and stem cells, however, the enzyme telomerase synthesizes telomere DNA to counter-balance telomere shortening and help maintain cellular proliferation. Of the primary telomere end-binding proteins, TPP1 has recently emerged as a primary contributor in protecting telomere DNA and in recruiting telomerase to the telomere ends. In this review, we summarize the current knowledge regarding the role of TPP1 in telomere maintenance.  相似文献   

19.
One-step affinity purification protocol for human telomerase.   总被引:13,自引:3,他引:10       下载免费PDF全文
Human telomerase is a ribonucleoprotein (RNP) enzyme, comprising protein components and an RNA template that catalyses telomere elongation through the addition of TTAGGG repeats. Telomerase function has been implicated in aging and cancer cell immortalization. We report a rapid and efficient one-step purification protocol to obtain highly active telomerase from human cells. The purification is based on affinity chromatography of nuclear extracts with antisense oligonucleotides complementary to the template region of the human telomerase RNA component. Bound telomerase is eluted with a displacement oligonucleotide under mild conditions. The resulting affinity-purified telomerase is active in PCR-amplified telomerase assays. The purified telomerase complex has a molecular mass of approximately 550 kDa compared to the approximately 1000 kDa determined for the telomerase RNP in unfractionated nuclear extracts. The purification protocol provides a rapid and efficient tool for functional and structural studies of human telomerase.  相似文献   

20.
端粒及端粒酶的研究进展   总被引:13,自引:0,他引:13  
端粒是染色体末端独特的蛋白质-DNA结构,在保护染色体的完整性和维持细胞的复制能力方面起着重要的作用.端粒酶则是由RNA和蛋白质亚基组成的、能够延长端粒的一种特殊反转录酶.端粒长度和端粒酶活性的变化与细胞衰老和癌变密切相关.端粒结合蛋白可能通过调节端粒酶的活性来调节端粒长度,进而控制细胞的衰老、永生化和癌变.研制端粒酶的专一性抑制剂在肿瘤治疗方面有着广阔的前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号