首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A fully habituated (auxin‐ and cytokinin‐independent) nonorganogenic (HNO) sugarbeet ( Beta vulgaris ) callus produces very little ethylene as compared with a normal (N) hormone‐requiring callus of the same strain. Both callus types react by growth changes to application of inhibitors of ethylene biosynthesis and ethylene action, of 1‐aminocyclopropane‐1‐carboxylic acid (ACC) as the immediate precursor of ethylene, to transfer from light to darkness, and also to application of exogenous ethylene or an ethylene trapper. This indicates their growth dependency upon their endogenously biosynthesized ethylene and also their sensitivity to exogenous gas. However, the sensitivity was generally higher for the HNO callus producing naturally less ethylene. The weaker reaction of the HNO callus to the exogenous ethylene was attributed to its hyperhydric status (a water layer surrounding the cells). Because low ethylene production appears as a general characteristic of habituated cell lines, the causal and/or consequential relationships of this low ethylene production with other characteristics of habituated tissues (absence of exogenous hormones in the culture media, deficiency of cell differentiation, accumulation of polyamines in neoplastic tissues) are discussed.  相似文献   

2.
The intact fruits of preclimacteric tomato (Lycopersicon esculentum Mill) or cantaloupe (Cucumis melo L.) produced very little ethylene and had low capability of converting 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene. When these unripe tomato or cantaloupe fruits were treated with ethylene for 16 hours there was no increase in ACC content or in ethylene production rate, but the tissue's capability to convert ACC to ethylene increased markedly. Such an effect was also observed in fruits of tomato mutants rin and nor, which do not undergo ripening and the climacteric increase in ethylene production during the senescence. The development of this ethylene-forming capability induced by ethylene increased with increasing ethylene concentration (from 0.1 to 100 microliters per liter) and duration (1 to 24 hours); when ethylene was removed this capability remained high for sometime (more than 24 hours). Norbornadiene, a competitive inhibitor of ethylene action, effectively eliminated the promotive effect of ethylene in tomato fruit. These data indicate that the development of the capability to convert ACC to ethylene in preclimacteric tomato and cantaloupe fruits are sensitive to ethylene treatment and that when these fruits are exposed to exogenous ethylene, the increase in ethylene-forming enzyme precedes the increase in ACC synthase.  相似文献   

3.
Summary Ethylene production was measured in cultured barley (Hordeum vulgare L.) anthers. The pattern of ethylene production and the content of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) were different among cultivars. Ethylene production appeared to be related to embryogenesis (callus and embryo production). In cultivars in which anthers had low amounts of ACC and produced ethylene slowly, the addition of ethylene promotors (Ethrel or ACC) increased embryogenesis. However, in the cultivar Klages, in which anthers had high amounts of ACC and produced ethylene rapidly, the addition of an ethylene production inhibitor (putrescine) increased embryogenesis. Thus, an optimum level of ethylene production appears to be important for embryogenesis. The differences in anther response and callus production among cultivars may be due to both the capacity to produce ethylene and the sensitivity to high ethylene levels.  相似文献   

4.
Ethylene is a plant hormone that regulates many aspects of growth and development. Despite the well-known association between ethylene and stress signalling, its effects on stomatal movements are largely unexplored. Here, genetic and physiological data are provided that position ethylene into the Arabidopsis guard cell signalling network, and demonstrate a functional link between ethylene and hydrogen peroxide (H(2)O(2)). In wild-type leaves, ethylene induces stomatal closure that is dependent on H(2)O(2) production in guard cells, generated by the nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) oxidase AtrbohF. Ethylene-induced closure is inhibited by the ethylene antagonists 1-MCP and silver. The ethylene receptor mutants etr1-1 and etr1-3 are insensitive to ethylene in terms of stomatal closure and H(2)O(2) production. Stomata of the ethylene signalling ein2-1 and arr2 mutants do not close in response to either ethylene or H(2)O(2) but do generate H(2)O(2) following ethylene challenge. Thus, the data indicate that ethylene and H(2)O(2) signalling in guard cells are mediated by ETR1 via EIN2 and ARR2-dependent pathway(s), and identify AtrbohF as a key mediator of stomatal responses to ethylene.  相似文献   

5.
Supraoptimal concentrations of indoleacetic acid (IAA) stimulated ethylene production, which in turn appeared to oppose the senescence-retarding effect of IAA in tobacco leaf discs. Kinetin acted synergistically with IAA in stimulating ethylene production, but it inhibited senescence. Silver ion and CO(2), which are believed to block ethylene binding to its receptor sites, delayed senescence in terms of chlorophyll loss and stimulated ethylene production. Both effects of Ag(+) were considerably greater than those of CO(2). IAA, kinetin, CO(2), and Ag(+), combined, acted to increase ethylene production further. Although this combination increased ethylene production about 160-fold over that of the control, it inhibited senescence. Treatment with 25 mul/l of ethylene in the presence of IAA enhanced chlorophyll loss in leaf discs and inhibited by about 90% the conversion of l-[3,4-(14)C] methionine to (14)C(2)H(4) suggesting autoinhibition of ethylene production.The results suggest that ethylene biosynthesis in leaves is controlled by hormones, especially auxin, and possibly the rate of ethylene production depends, via a feedback control system, on the rates of ethylene binding at its receptor sites.  相似文献   

6.
Endogenous levels of ethylene appeared to he suhoptimal for somatic embryogenesis in a suspension culture of carrot. Low concentrations of 1-aminocyclopropane-1-carboxylic acid (ACC). 2-chloroethylphosphonic acid (ethephon) and elhylene stimulated embryogenesis whereas higher concentrations were inhibitory. The stimulation by ACC was through its conversion to ethylene. whereas the inhibition by ACC was not. Low concentrations of AgNO3. an inhibitor of ethylene action, inhibited embryo-genesis but stimulated ethylene production. Aminoethoxyvinylglycine (AVG) and aminooxyacetic acid (AOA). commonly used inhibitors of ACC synthase. inhibited both embryogenesis and ethylene production. However, the inhibition of embryogenesis was not related to the inhibition ote ethylene production. Very low concentrations of AVG stimulated embryo production in a way unrelated to its effect on ethylene production. Salicylic acid and CoCl2. inhibitors of ACC oxidase in other systems, inhibited embryogenesis but. again, in way(s) unrelated to their inhibition of ethylene production. In fact, low concentrations of salicylic acid stimulated rather than inhibited ethylene production. The results show that in suspension-cultured cells, caution is warranted in the interpretation of results obtained with agents presumed to inhibit ethylene biosynthesis. The stimulation of somatic embryogenesis by ethylene unequivocally shows that the inhibition of embryo development by 2.4-dichlorophenoxyacetic acid (2.4-D) and other auxins cannot be through their stimulatory effect on ethylene production.  相似文献   

7.
Polyamidoamine dendrimers having poly(ethylene glycol) grafts were designed as a novel drug carrier which possesses an interior for the encapsulation of drugs and a biocompatible surface. Poly(ethylene glycol) monomethyl ether with the average molecular weight of 550 or 2000 was combined to essentially every chain end of the dendrimer of the third or fourth generation via urethane bond. The poly(ethylene glycol)-attached dendrimers encapsulating anticancer drugs, adriamycin and methotrexate, were prepared by extraction with chloroform from mixtures of the poly(ethylene glycol)-attached dendrimers and varying amounts of the drugs. Their ability to encapsulate these drugs increased with increasing dendrimer generation and chain length of poly(ethylene glycol) grafts. Among the poly(ethylene glycol)-attached dendrimers prepared, the highest ability was achieved by the dendrimer of the fourth generation having the poly(ethylene glycol) grafts with the average molecular weight of 2000, which could retain 6.5 adriamycin molecules or 26 methotrexate molecules/dendrimer molecule. The methotrexate-loaded poly(ethylene glycol)-attached dendrimers released the drug slowly in an aqueous solution of low ionic strength. However, in isotonic solutions, methotrexate and adriamycin were readily released from the poly(ethylene glycol)-attached dendrimers.  相似文献   

8.
Ethylene production, as well as the expression of ethylene biosynthetic (Rh-ACS1-4 and Rh-ACO1) and receptor (Rh-ETR1-5) genes, was determined in five different floral tissues (sepals, petals, stamens, gynoecia, and receptacles) of cut rose (Rosa hybrida cv. Samantha upon treatment with ethylene or the ethylene inhibitor 1-methylcyclopropene (1-MCP). Ethylene-enhanced ethylene production occurred only in gynoecia, petals, and receptacles, with gynoecia showing the greatest enhancement in the early stage of ethylene treatment. However, 1-MCP did not suppress ethylene production in these three tissues. In sepals, ethylene production was highly decreased by ethylene treatment, and increased dramatically by 1-MCP. Ethylene production in stamens remained unchanged after ethylene or 1-MCP treatment. Induction of certain ethylene biosynthetic genes by ethylene in different floral tissues was positively correlated with the ethylene production, and this induction was also not suppressed by 1-MCP. The expression of Rh-ACS2 and Rh-ACS3 was quickly induced by ethylene in gynoecia, but neither Rh-ACS1 nor Rh-ACS4 was induced by ethylene in any of the five tissues. In addition, Rh-ACO1 was induced by ethylene in all floral tissues except sepals. The induced expression of ethylene receptor genes by ethylene was much faster in gynoecia than in petals, and the expression of Rh-ETR3 was strongly suppressed by 1-MCP in all floral tissues. These results indicate that ethylene biosynthesis in gynoecia is regulated developmentally, rather than autocatalytically. The response of rose flowers to ethylene occurs initially in gynoecia, and ethylene may regulate flower opening mainly through the Rh-ETR3 gene in gynoecia.  相似文献   

9.
The inhibitory effects of the cyclic olefin 2,5-norbornadiene (NBD) on ethylene action were tested in carnation (Dianthus caryophyllus L. cv White Sim) flowers. Treatment of flowers at anthesis with ethylene in the presence of 500 microliters per liter NBD increased the concentration of ethylene required to elicit a response (petal senescence), indicating that NBD behaves as a competitive inhibitor of ethylene action. Transfer of flowers producing autocatalytic ethylene and exhibiting evidence of senescence (petal in-rolling) to an atmosphere of NBD resulted in a rapid reduction in ethylene production, petal 1-aminocyclopropane-1-carboxylic acid synthase activity, 1-aminocyclopropane-1-carboxylic acid content, and ethylene forming enzyme activity. Removal of NBD resulted in recovery of ethylene biosynthesis. These results support the autocatalytic regulation of ethylene production during the climacteric stage of petal senescence and suggest that continued perception of ethylene is required for maintenance of ethylene biosynthesis. The inhibition of ethylene action by NBD after the flowers had reached the climacteric peak was associated with interruption of petal senescence as evidenced by reversal of senescence symptoms. This result is in contrast to the widely held belief that the rate of petal senescence is fixed and irreversible once petals enter into the ethylene climacteric.  相似文献   

10.
Abscission: the phytogerontological effects of ethylene   总被引:10,自引:10,他引:0       下载免费PDF全文
The role of ethylene in the aging of bean (Phaseolus vulgaris L. cv. Red Kidney) petiole abscission zone explants was examined. The data indicate that ethylene does accelerate aging in addition to inducing changes in break strength. Application of ethylene during the aging stage (stage 1) promoted abscission when followed by a second ethylene treatment during the cell separating stage (stage 2). The half-maximal effective concentration of ethylene to induce aging was around 0.3 microliter per liter; 10 microliters per liter was a saturating dose. CO2 reversal of ethylene action during stage 1 was incomplete and gave ambiguous results. CO2 (10%) reversed the effect of 10 microliters per liter ethylene but not 1 microliter per liter ethylene. The possibility that ethylene not only accelerated aging but was also a requirement for it was tested, and experimental evidence in favor of this idea was obtained. It was concluded that ethylene plays a dual role in the abscission of bean petiole explants: a phytogerontological effect and a cellulase-inducing effect.  相似文献   

11.
Role of ethylene in the senescence of detached rice leaves   总被引:6,自引:2,他引:4       下载免费PDF全文
Kao CH  Yang SF 《Plant physiology》1983,73(4):881-885
The role of ethylene in the senescence of detached rice leaves in relation to their changes in 1-aminocyclopropane-1-carboxylic acid (ACC) content and ethylene production was studied. In freshly excised rice leaf segments, ACC level and ethylene production rates were very low. Following incubation, the rates of ethylene production increased and reached a maximum in 12 h, and subsequently declined. The rise of ethylene production was associated with a 20- to 30-fold increase in ACC level.

Ethylene seems to be involved in the regulation of the senescence of detached rice leaves. This conclusion was based on the observations that (a) maximum ethylene production preceded chlorophyll degradation, (b) ACC application promoted chlorophyll degradation, (c) inhibitors of ethylene production and ethylene action retarded chlorophyll degradation, and (d) various treatments such as light, cycloheximide, α,α-dipyridyl, Ni2+, and cold temperature, which retarded chlorophyll degradation, also inhibited ethylene production.

Abscisic acid promoted senescence but significantly decreased ethylene production, whereas benzyladenine retarded senescence but promoted ethylene production. This is interpreted to indicate that abscisic acid treatment increased the tissue sensitivity to ethylene, whereas benzyladenine treatment decreased it.

  相似文献   

12.
Ethylene is known to interact with auxin in regulating stem growth, and yet evidence for the role of ethylene in tropic responses is contradictory. Our analysis of four mutants of tomato (Lycopersicon esculentum) altered in their response to gravity, auxin, and/or ethylene revealed concentration-dependent modulation of shoot gravitropism by ethylene. Ethylene inhibitors reduce wild-type gravicurvature, and extremely low (0.0005-0.001 microliter L-1) ethylene concentrations can restore the reduced gravitropic response of the auxin-resistant dgt (diageotropica) mutant to wild-type levels. Slightly higher concentrations of ethylene inhibit the gravitropic response of all but the ethylene-insensitive nr (never-ripe) mutant. The gravitropic responses of nr and the constitutive-response mutant epi (epinastic) are slightly and significantly delayed, respectively, but otherwise normal. The reversal of shoot gravicurvature by red light in the lz-2 (lazy-2) mutant is not affected by ethylene. Taken together, these data indicate that, although ethylene does not play a primary role in the gravitropic response of tomato, low levels of ethylene are necessary for a full gravitropic response, and moderate levels of the hormone specifically inhibit gravicurvature in a manner different from ethylene inhibition of overall growth.  相似文献   

13.
A meeting of the Post-Harvest Biology Group of the Association of Applied Biologists on 26 April 1984 discussed the significance of ethylene in the post-harvest handling of horticultural commodities. The natural production of ethylene by crops and the risks of accidental exposure were surveyed. The effects of ethylene on plants were described in terms of ability to respond (responsiveness) and the relationship between response and concentration of ethylene (sensitivity). Sensitivity is related to the properties of ethylene receptors and may be common to all plant tissues. The varying responses to ethylene of fruits, vegetables and ornamentals were described. The limited studies of production and action of ethylene under temperature and atmosphere conditions of normal post-harvest handling were reviewed. Methods of applying and removing ethylene were evaluated in terms of their practicality and applicability. The methodology of ethylene measurement was briefly considered. The potential for further research on post-harvest significance of ethylene was discussed.  相似文献   

14.
Ethylene enhances water transport in hypoxic aspen   总被引:1,自引:0,他引:1  
Water transport was examined in solution culture grown seedlings of aspen (Populus tremuloides) after short-term exposures of roots to exogenous ethylene. Ethylene significantly increased stomatal conductance, root hydraulic conductivity (L(p)), and root oxygen uptake in hypoxic seedlings. Aerated roots that were exposed to ethylene also showed enhanced L(p). An ethylene action inhibitor, silver thiosulphate, significantly reversed the enhancement of L(p) by ethylene. A short-term exposure of excised roots to ethylene significantly enhanced the root water flow (Q(v)), measured by pressurizing the roots at 0.3 MPa. The Q(v) values in ethylene-treated roots declined significantly when 50 microM HgCl(2) was added to the root medium and this decline was reversed by the addition of 20 mM 2-mercaptoethanol. The results suggest that the response of Q(v) to ethylene involves mercury-sensitive water channels and that root-absorbed ethylene enhanced water permeation through roots, resulting in an increase in root water transport and stomatal opening in hypoxic seedlings.  相似文献   

15.
The objective of the current investigation was to study the role of ethylene in the maturation of white spruce ( Picea glauca [Moench.] Voss) somatic embryos. This was carried out by examining the effects of (1) 1-aminocyclopropane-1-carboxylic acid (ACC), a direct precursor of ethylene in plant tissue, (2) silver nitrate (AgNO3), an inhibitor of ethylene action, (3) α -aminooxyamino acid (AOA), a potent inhibitor of ethylene biosynthesis, and (4) enrichment with ethylene. Ethylene biosynthesis was biphasic and gradually increased during embryo development, whereas endogenous ACC and N-malonylaminocyclopropane-1-carboxylic acid (mACC) decreased. Addition of ACC or AOA to the culture medium increased or decreased, respectively, ethylene biosynthesis by altering endogenous ACC levels during the culture period. In contrast to AOA and AgNO3, ACC and ethylene enrichment significantly decreased the production of mature somatic embryos and increased the browning of the cultures. However, the structure of the shoot apex in mature cotyledonary stage embryos formed under ethylene enrichment was similar to that in control systems. This shows that a reduction in ethylene is beneficial to maturation of white spruce somatic embryos. This is further substantiated by the finding that the inhibitory effects of AOA were partially reversed by the addition of ethylene. The possible effects of the interaction between ethylene and polyamines on somatic embryo development are also discussed.  相似文献   

16.
Liu Q  Wen CK 《Plant physiology》2012,158(3):1193-1207
The ethylene response is negatively regulated by a family of five ethylene receptor genes in Arabidopsis (Arabidopsis thaliana). The five members of the ethylene receptor family can physically interact and form complexes, which implies that cooperativity for signaling may exist among the receptors. The ethylene receptor gene mutations etr1-1((C65Y))(for ethylene response1-1), ers1-1((I62P)) (for ethylene response sensor1-1), and ers1(C65Y) are dominant, and each confers ethylene insensitivity. In this study, the repression of the ethylene response by these dominant mutant receptor genes was examined in receptor-defective mutants to investigate the functional significance of receptor cooperativity in ethylene signaling. We showed that etr1-1((C65Y)), but not ers1-1((I62P)), substantially repressed various ethylene responses independent of other receptor genes. In contrast, wild-type receptor genes differentially supported the repression of ethylene responses by ers1-1((I62P)); ETR1 and ETHYLENE INSENSITIVE4 (EIN4) supported ers1-1((I62P)) functions to a greater extent than did ERS2, ETR2, and ERS1. The lack of both ETR1 and EIN4 almost abolished the repression of ethylene responses by ers1(C65Y), which implied that ETR1 and EIN4 have synergistic effects on ers1(C65Y) functions. Our data indicated that a dominant ethylene-insensitive receptor differentially repressed ethylene responses when coupled with a wild-type ethylene receptor, which supported the hypothesis that the formation of a variety of receptor complexes may facilitate differential receptor signal output, by which ethylene responses can be repressed to different extents. We hypothesize that plants can respond to a broad ethylene concentration range and exhibit tissue-specific ethylene responsiveness with differential cooperation of the multiple ethylene receptors.  相似文献   

17.
BACKGROUND AND AIMS: The relationship between ethylene production and both seed dormancy and germination was investigated using red rice (weedy rice) as a model species. METHODS: Both fully dormant and after-ripened (non-dormant) naked caryopses were incubated with or without inhibitors of ethylene synthesis [aminoethoxyvinylglycine (AVG)] and perception [silver thiosulfate (STS)], or in the presence of the natural ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC). The kinetics of ethylene emissions were measured with a sensitive laser-photoacoustic system. KEY RESULTS: Dormant red rice caryopses did not produce ethylene. In non-dormant caryopses, ethylene evolution never preceded the first visible stage of germination (pericarp splitting), and ethylene inhibitors completely blocked ethylene production, but not pericarp splitting. Accordingly, endogenous ACC appeared to be lacking before pericarp splitting. However, early seedling growth (radicle or coleoptile attaining the length of 1 mm) followed ethylene evolution and was delayed by the inhibitors. Wounding the dormant caryopses induced them to germinate and produce ethylene, but their germination was slow and pericarp splitting could be speeded up by ethylene. CONCLUSIONS: The findings suggest that, in red rice, endogenous ethylene stimulates the growth of the nascent seedling, but does not affect seed dormancy or germination inception. Correspondingly, this phytohormone does not play a role in the dormancy breakage induced by wounding, but accelerates germination after such breakage has occurred.  相似文献   

18.
The dynamic viscosities of dilute aqueous poly(ethylene glycol) and dextran, and poly(ethylene glycol)-dextran-water solutions have been measured. The poly(ethylene glycol) and dextran samples had average molecular masses of 8000 Da and 580 000 Da, respectively. To estimate the values of viscosity of poly(ethylene glycol)-dextran-water solutions, a Grunberg like equation has been proposed which takes into account the influence of poly(ethylene glycol) and dextran concentrations. The relative errors vary between 0.76 and 11.64 in absolute value.  相似文献   

19.
Incubation of plant tissues at a constant elevated temperature greatly inhibits both basal and wound ethylene production. However, recovery from heat treatment is relatively rapid and is followed by stimulated ethylene production. The present investigation examines the kinetics of ethylene production after short-term heal treatment and the regulation of heat-altered ethylene production. Subapical stem segments of 7-day-old etiolated pea L. cv. Alaska) seedlings were analyzed for ethylene production, 1-aminocyclopropane-l-carboxylic acid (ACC) oxidation, and ACC and l-(malonylamino)cyclopropane-l-carboxylic acid (MACC) content after a 2-min 40°C heat pulse. The short-term heat pulse transiently inhibited ethylene production and ACC oxidation accompanied by a slight ACC accumulation within a 30-min time period. Conjugation to MACC did not appear to play an integral role in heat-regulated ethylene production. It was concluded that the major factor affecting ethylene production after heat treatment is the temporary inactivation of ACC oxidation. The possible roles of ACC synthase, ACC oxidase and lipoxygenase in regulating ethylene production after heat treatment are discussed.  相似文献   

20.
A poly(ethylene oxide)-block-poly(methylidene malonate 2.1.2) block copolymer (PEO-b-PMM 2.1.2) bearing a mannose moiety at the poly(ethylene oxide) chain end was synthesized by sequential anionic polymerization of ethylene oxide (EO) and methylidene malonate 2.1.2 (MM 2.1.2), followed by a coupling reaction between its poly(ethylene oxide) amino- or aldehyde-end group and a sugar derivative. Different coupling procedures, either in organic media or in aqueous micellar solutions, were examined in order to optimize the poly(ethylene oxide) end-glycosylation yield. The micellar size of the functionalized block copolymers was determined by dynamic light scattering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号