首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytolytic viruses abrogate host protein synthesis to maximize the translation of their own mRNAs. In this study, we analyzed the eukaryotic initiation factor (eIF) 4G requirement for translation of vesicular stomatitis virus (VSV) and vaccinia virus (VV) mRNAs in HeLa cells using two different strategies: eIF4G depletion by small interfering RNAs or cleavage of eIF4G by expression of poliovirus 2A protease. Depletion of eIF4GI or eIF4GII moderately inhibits cellular protein synthesis, whereas silencing of both factors has only a slightly higher effect. Under these conditions, the extent of VSV protein synthesis is similar to that of nondepleted control cells, whereas VV expression is substantially reduced. Similar results were obtained when eIF4E was depleted. On the other hand, eIF4G cleavage by poliovirus 2A protease strongly inhibits translation of VV protein expression, whereas translation directed by VSV mRNAs is not abrogated, even though VSV mRNAs are capped. Therefore, the requirement for eIF4F activity is different for VV and VSV, suggesting that the molecular mechanism by which their mRNAs initiate their translation is also different. Consistent with these findings, eIF4GI does not colocalize with ribosomes in VSV-infected cells, while eIF2α locates at perinuclear sites coincident with ribosomes.  相似文献   

2.
Epidemiological studies implicate dietary soy isoflavones as breast cancer preventives, especially due to their anti-estrogenic properties. However, soy isoflavones may also have a role in promoting breast cancer, which has yet to be clarified. We previously reported that equol, a metabolite of the soy isoflavone daidzein, may advance breast cancer potential via up-regulation of the eukaryotic initiation factor 4GI (eIF4GI). In estrogen receptor negative (ER−) metastatic breast cancer cells, equol induced elevated levels of eIF4G, which were associated with increased cell viability and the selective translation of mRNAs that use non-canonical means of initiation, including internal ribosome entry site (IRES), ribosome shunting, and eIF4G enhancers. These mRNAs typically code for oncogenic, survival, and cell stress molecules. Among those mRNAs translationally increased by equol was the oncogene and eIF4G enhancer, c-Myc. Here we report that siRNA-mediated knockdown of c-Myc abrogates the increase in cancer cell viability and mammosphere formation by equol, and results in a significant down-regulation of eIF4GI (the major eIF4G isoform), as well as reduces levels of some, but not all, proteins encoded by mRNAs that are translationally stimulated by equol treatment. Knockdown of eIF4GI also markedly reduces an equol-mediated increase in IRES-dependent mRNA translation and the expression of specific oncogenic proteins. However, eIF4GI knockdown did not reciprocally affect c-Myc levels or cell viability. This study therefore implicates c-Myc as a potential regulator of the cancer-promoting effects of equol via up-regulation of eIF4GI and selective initiation of translation on mRNAs that utilize non-canonical initiation, including certain oncogenes.  相似文献   

3.
Messenger RNA translation, or protein synthesis, is a fundamental biological process affecting cell growth, survival and proliferation. Initiation is the rate limiting and hence the most regulated step of translation. In eukaryotes, translation initiation is facilitated by multiple protein factors collectively called eIFs (for eukaryotic translation initiation factors). The complex consisting of the eIF4 group factors including the mRNA cap-binding eIF4E protein, large scaffolding protein eIF4G and RNA helicase eIF4A is assisted by the eIF4B co-factor to unwind local secondary structures and create a ribosome landing pad on mRNA. Recruitment of the ribosome and augmentation in the mRNA scanning process culminates in the positioning of the ribosome over the start codon. Deregulated translational control is believed to play an important role in oncogenic transformation. Indeed, many eIFs are bona fide proto-oncogenes. In many types of human cancers, eIFs are either overexpressed or ectopically activated by Ras-MAPK and PI3K-mTOR signaling cascades, resulting in increased survival and accelerated proliferation. In this review we will analyze the bulk of data describing eIF4B and its role in cell survival and proliferation. Recent studies have shown that eIF4B is phosphorylated and activated by Ras-MAPK and PI3K-mTOR signaling cascades. In addition, eIF4B regulates translation of proliferative and pro-survival mRNAs. Moreover, eIF4B depletion in cancer cells attenuates proliferation, sensitizes them to genotoxic stress driven apoptosis. Taken together, these findings identify eIF4B as a potential target for development of anti-cancer therapies.  相似文献   

4.
Eukaryotic translation initiation factor 4GI (eIF4GI) is an essential scaffolding protein required to recruit the 43 S complex to the 5'-end of mRNA during translation initiation. We have previously demonstrated that eIF4GI protein expression is translationally regulated. This regulation is mediated by cis-acting RNA elements, including an upstream open reading frame and an IRES that directs synthesis of five eIF4GI protein isoforms via alternative AUG initiation codon selection. Here, we further characterize eIF4GI IRES function and show that eIF4GI is expressed from several distinct mRNAs that vary via alternate promoter use and alternate splicing. Several mRNA variants contain the IRES element. We found that IRES activity mapped to multiple regions within the eIF4GI RNA sequence, but not within the 5'-UTR per se. However, the 5'-UTR enhanced IRES activity in vivo and played a role in initiation codon selection. The eIF4GI IRES was active when transfected into cells in an RNA form, and thus, does not require nuclear processing events for its function. However, IRES activity was found to be dependent upon the presence, in cis, of a 5' m7guanosine-cap. Despite this requirement, the eIF4GI IRES was activated by 2A protease cleavage of eIF4GI, in vitro, and retained the ability to promote translation during poliovirus-mediated inhibition of cap-dependent translation. These data indicate that intact eIF4GI protein is not required for the de novo synthesis of eIF4GI, suggesting its expression can continue under stress or infection conditions where eIF4GI is cleaved.  相似文献   

5.
Messenger RNA translation or protein synthesis, is a fundamental biological process affecting cell growth, survival and proliferation. Initiation is the rate limiting and hence the most regulated step of translation. In eukaryotes, translation initiation is facilitated by multiple protein factors collectively called eIFs (for eukaryotic translation initiation factors). The complex consisting of the eIF4 group factors including the mRNA cap-binding eIF4E protein, large scaffolding protein eIF4G and RNA helicase eIF4A is assisted by the eIF4B co-factor to unwind local secondary structures and create a ribosome landing pad on mRNA. Recruitment of the ribosome and augmentation in the mRNA scanning process culminates in the positioning of the ribosome over the start codon. Deregulated translational control is believed to play an important role in oncogenic transformation. Indeed, many eIFs are bona fide proto-oncogenes. In many types of human cancers, eIFs are either overexpressed or ectopically activated by Ras-MAPK and PI3K-mTOR signaling cascades, resulting in increased survival and accelerated proliferation. In this review we will analyze the bulk of data describing eIF4B and its role in cell survival and proliferation. Recent studies have shown that eIF4B is phosphorylated and activated by Ras-MAPK and PI3K-mTOR signaling cascades. In addition, eIF4B regulates translation of proliferative and pro-survival mRNAs. Moreover, eIF4B depletion in cancer cells attenuates proliferation, sensitizes them to genotoxic stress-driven apoptosis. Taken together, these findings identify eIF4B as a potential target for development of anti-cancer therapies.Key words: eIF4B, translation, signaling, structured 5′UTR, helicase activity, survival, proliferation, apoptosis  相似文献   

6.
M Piron  P Vende  J Cohen    D Poncet 《The EMBO journal》1998,17(19):5811-5821
Most eukaryotic mRNAs contain a 5'cap structure and a 3'poly(A) sequence that synergistically increase the efficiency of translation. Rotavirus mRNAs are capped, but lack poly(A) sequences. During rotavirus infection, the viral protein NSP3A is bound to the viral mRNAs 3' end. We looked for cellular proteins that could interact with NSP3A, using the two-hybrid system in yeast. Screening a CV1 cell cDNA library allowed us to isolate a partial cDNA of the human eukaryotic initiation factor 4GI (eIF4GI). The interaction of NSP3A with eIF4GI was confirmed in rotavirus infected cells by co-immunoprecipitation and in vitro with NSP3A produced in Escherichia coli. In addition, we show that the amount of poly(A) binding protein (PABP) present in eIF4F complexes decreases during rotavirus infection, even though eIF4A and eIF4E remain unaffected. PABP is removed from the eIF4F complex after incubation in vitro with the C-terminal part of NSP3A, but not with its N-terminal part produced in E.coli. These results show that a physical link between the 5' and the 3' ends of mRNA is necessary for the efficient translation of viral mRNAs and strongly support the closed loop model for the initiation of translation. These results also suggest that NSP3A, by taking the place of PABP on eIF4GI, is responsible for the shut-off of cellular protein synthesis.  相似文献   

7.
8.
Translation initiation is poised between global regulation of cell growth and specific regulation of cell division. The mRNA cap-binding protein (eIF4E) is a critical integrator of cell growth and division because it is rate-limiting for translation initiation and is also rate-limiting for G(1) progression. Translation initiation factor eIF4E is also oncogenic and a candidate target of c-myc. Recently, an activated inhibitory 4E-binding protein (4EBP) that blocks eIF4E was used to study its regulation of Drosophila growth. We adopted this approach in mammalian cells after identifying an autosensing mechanism that protects against increased levels of 4EBP1. Increased 4EBP1 induced a quantitative increase in the inactivated phosphorylated form of 4EBP1 in vitro and in vivo. To overcome this protective mechanism, we introduced alanine substitutions at four phosphorylation/inactivation sites in 4EBP1 to constitutively activate a 4EBP mu to block eIF4E. Overexpression of activated 4EBP mu inhibited cell proliferation and completely blocked transformation by both eIF4E and c-myc, although it did not block all tested oncogenes. Surprisingly, expression of the activated 4EBP mu increased cell size and protein content. Activated 4EBP mu blocked both cell proliferation and c-myc transformation by inhibiting G(1) progression and increasing apoptosis, without decreasing protein synthesis. Our results identify mammalian eIF4E as rate-limiting for cell cycle progression before it regulates cell growth. It further identifies G(1) control by translation initiation factors as an essential genetic target of c-myc that is necessary for its ability to transform cells.  相似文献   

9.
The eukaryotic initiation factor (eIF) 4GI gene locus (eIF4GI) contains three identified promoters, generating alternately spliced mRNAs, yielding a total of five eIF4GI protein isoforms. Although eIF4GI plays a critical role in mRNA recruitment to the ribosomes, little is known about the functions of the different isoforms, their partner binding capacities, or the role of the homolog, eIF4GII, in translation initiation. To directly address this, we have used short interfering RNAs (siRNAs) expressed from DNA vectors to silence the expression of eIF4GI in HeLa cells. Here we show that reduced levels of specific mRNA and eIF4GI isoforms in HeLa cells promoted aberrant morphology and a partial inhibition of translation. The latter reflected dephosphorylation of 4E-BP1 and decreased eIF4F complex levels, with no change in eIF2alpha phosphorylation. Expression of siRNA-resistant Myc-tagged eIF4GI isoforms has allowed us to show that the different isoforms exhibit significant differences in their ability to restore translation rates. Here we quantify the efficiency of eIF4GI promoter usage in mammalian cells and demonstrate that even though the longest isoform of eIF4GI (eIF4GIf) was relatively poorly expressed when reintroduced, it was more efficient at promoting the translation of cellular mRNAs than the more highly expressed shorter isoforms used in previous functional studies.  相似文献   

10.
Initiation is the rate-limiting step in protein synthesis and therefore an important target for regulation. For the initiation of translation of most cellular mRNAs, the cap structure at the 5' end is bound by the translation factor eukaryotic initiation factor 4E (eIF4E), while the poly(A) tail, at the 3' end, is recognized by the poly(A)-binding protein (PABP). eIF4G is a scaffold protein that brings together eIF4E and PABP, causing the circularization of the mRNA that is thought to be important for an efficient initiation of translation. Early in infection, rotaviruses take over the host translation machinery, causing a severe shutoff of cell protein synthesis. Rotavirus mRNAs lack a poly(A) tail but have instead a consensus sequence at their 3' ends that is bound by the viral nonstructural protein NSP3, which also interacts with eIF4GI, using the same region employed by PABP. It is widely believed that these interactions lead to the translation of rotaviral mRNAs, impairing at the same time the translation of cellular mRNAs. In this work, the expression of NSP3 in infected cells was knocked down using RNA interference. Unexpectedly, under these conditions the synthesis of viral proteins was not decreased, while the cellular protein synthesis was restored. Also, the yield of viral progeny increased, which correlated with an increased synthesis of viral RNA. Silencing the expression of eIF4GI further confirmed that the interaction between eIF4GI and NSP3 is not required for viral protein synthesis. These results indicate that NSP3 is neither required for the translation of viral mRNAs nor essential for virus replication in cell culture.  相似文献   

11.
p27 is a key regulator of cell proliferation through inhibition of G(1) cyclin-dependent kinase (CDK) activity. Translation of the p27 mRNA is an important control mechanism for determining cellular levels of the inhibitor. Nearly all eukaryotic mRNAs are translated through a mechanism involving recognition of the 5' cap by eukaryotic initiation factor 4E (eIF4E). In quiescent cells eIF4E activity is repressed, leading to a global decline in translation rates. In contrast, p27 translation is highest during quiescence, suggesting that it escapes the general repression of translational initiation. We show that the 5' untranslated region (5'-UTR) of the p27 mRNA mediates cap-independent translation. This activity is unaffected by conditions in which eIF4E is inhibited. In D6P2T cells, elevated cyclic AMP levels cause a rapid withdrawal from the cell cycle that is correlated with a striking increase in p27. Under these same conditions, cap-independent translation from the p27 5'-UTR is enhanced. These results indicate that regulation of internal initiation of translation is an important determinant of p27 protein levels.  相似文献   

12.
13.
Sequence elements that can function as internal ribosome entry sites (IRES) have been identified in 5' noncoding regions of certain uncapped viral and capped cellular mRNA molecules. However, it has remained largely unknown whether IRES elements are functional when located in their natural capped mRNAs. Therefore, the polysomal association and translation of several IRES-containing cellular mRNAs was tested under conditions that severely inhibited cap-dependent translation, that is, after infection with poliovirus. It was found that several known IRES-containing mRNAs, such as BiP and c-myc, were both associated with the translation apparatus and translated in infected cells when cap-dependent translation of most host-cell mRNAs was blocked, indicating that the IRES elements were functional in their natural mRNAs. Curiously, the mRNAs that encode eukaryotic initiation factor 4GI (eIF4GI) and 4GII (eIF4GII), two proteins with high identity and similar functions in the initiation of cap-dependent translation, were both associated with polysomes in infected cells. The 5'-end sequences of eIF4GI mRNA were isolated from a cDNA expression library and shown to function as an internal ribosome entry site when placed into a dicistronic mRNA. These findings suggest that eIF4G proteins can be synthesized at times when 5' cap-dependent mRNA translation is blocked, supporting the notion that eIF4G proteins are needed in both 5' cap-independent and 5' cap-dependent translational initiation mechanisms.  相似文献   

14.
Activation of a temperature-sensitive form of p53 in murine erythroleukaemia cells results in a rapid impairment of protein synthesis that precedes inhibition of cell proliferation and loss of cell viability by several hours. The inhibition of translation is associated with specific cleavages of polypeptide chain initiation factors eIF4GI and eIF4B, a phenomenon previously observed in cells induced to undergo apoptosis in response to other stimuli. Although caspase activity is enhanced in the cells in which p53 is activated, both the effects on translation and the cleavages of the initiation factors are completely resistant to inhibition of caspase activity. Moreover, exposure of the cells to a combination of the caspase inhibitor z-VAD.FMK and the survival factor erythropoietin prevents p53-induced cell death but does not reverse the inhibition of protein synthesis. We conclude that the p53-regulated cleavages of eIF4GI and eIF4B, as well as the overall inhibition of protein synthesis, are caspase-independent events that can be dissociated from the induction of apoptosis per se.  相似文献   

15.
The interaction between eukaryotic translation initiation factor 4G (eIF4G) and the poly(A)-binding protein (PABP) facilitates translational initiation of polyadenylated mRNAs. It was shown recently that the expression of an eIF4GI mutant defective in PABP binding in Xenopus oocytes reduces polyadenylated mRNA translation and dramatically inhibits progesterone-induced oocyte maturation. These results strongly suggest that the eIF4G-PABP interaction plays a critical role in the translational control of maternal mRNAs during oocyte maturation. In the present work, we employed another strategy to interfere eIF4G-PABP interaction in Xenopus oocytes. The amino-terminal part of eIF4GI containing the PABP-binding site (4GNt-M1) was expressed in Xenopus oocytes. 4GNt-M1 could bind to PABP in oocytes, which suggests that 4GNt-M1 may evict PABP from the endogenous eIF4G. The expression of 4GNt-M1 resulted in reduction of polyadenylated mRNA translation. Furthermore, 4GNt-M1 inhibited progesterone-induced oocyte maturation. In contrast, 4GNt-M2, in which the PABP-binding sequences were mutated to abolish the PABP-binding activity, could not inhibit polyadenylated mRNA translation or oocyte maturation. These results further support the idea that the eIF4G-PABP interaction is critical for translational regulation of maternal mRNAs in oocytes.  相似文献   

16.
Translation initiation plays an important role in cell growth, proliferation, and survival. The translation initiation factor eIF4B (eukaryotic initiation factor 4B) stimulates the RNA helicase activity of eIF4A in unwinding secondary structures in the 5′ untranslated region (5′UTR) of the mRNA in vitro. Here, we studied the effects of eIF4B depletion in cells using RNA interference (RNAi). In agreement with the role of eIF4B in translation initiation, its depletion resulted in inhibition of this step. Selective reduction of translation was observed for mRNAs harboring strong to moderate secondary structures in their 5′UTRs. These mRNAs encode proteins, which function in cell proliferation (Cdc25C, c-myc, and ODC [ornithine decarboxylase]) and survival (Bcl-2 and XIAP [X-linked inhibitor of apoptosis]). Furthermore, eIF4B silencing led to decreased proliferation rates, promoted caspase-dependent apoptosis, and further sensitized cells to camptothecin-induced cell death. These results demonstrate that eIF4B is required for cell proliferation and survival by regulating the translation of proliferative and prosurvival mRNAs.Targeting the translation initiation pathway is emerging as a potential therapy for inhibiting cancer cell growth (35, 38). Ribosome recruitment to the 5′ ends of eukaryotic mRNAs proceeds via translation initiation mechanisms that are dependent either on the 5′ cap structure (m7GpppN, where N is any nucleotide) or an internal ribosome entry site (IRES). The majority of translation initiation events in eukaryotes are mediated through cap-dependent translation whereby the 40S ribosomal subunit is recruited to the vicinity of the mRNA 5′ cap structure by the eukaryotic initiation factor 4F (eIF4F) complex. eIF4F is comprised of eIF4E (the cap-binding subunit), eIF4A (an RNA helicase), and eIF4G (a large scaffolding protein for eIF4E, eIF4A, and other initiation factors). Once assembled at the 5′ cap, the 40S ribosomal subunit in association with several initiation factors scans the 5′ untranslated region (5′UTR) of the mRNA until it encounters a start codon in a favorable context, followed by polypeptide synthesis (37).Early in vitro studies have shown that the initiation factor eIF4B acts to potentiate ribosome recruitment to the mRNA (3, 45). eIF4B stimulates translation of both capped and uncapped mRNAs in vitro (1, 36). This function is exerted through stimulation of the helicase activity of eIF4A (43), possibly through direct interactions with eIF4A (44) or with mRNA, the ribosome-associated eIF3, and 18S rRNA (28, 29, 44). Thus, eIF4B is thought to form auxiliary bridges between the mRNA and the 40S ribosomal subunit. Toeprinting studies using mammalian eIF4B underscored its importance in the assembly of the 48S initiation complex, especially on mRNAs harboring secondary structures in the 5′UTRs (11).In vivo studies of eIF4B are limited. Ectopic expression of eIF4B in cultured Drosophila melanogaster cells and in developing eye imaginal discs stimulated cell proliferation (16). Enhanced cell proliferation is most likely mediated by increased translation of a subset of mRNAs, since knockdown of Drosophila eIF4B by RNA interference (RNAi) caused a modest reduction in global translation but compromised the survival of insect cells grown under low serum conditions (16). Studies of eIF4B in mammalian cells yielded contradictory results. Transient overexpression of eIF4B stimulated translation initiation in a phosphorylation-dependent manner in some cells (18, 49) while inhibiting translation in others (30, 31, 41). These differences might be attributed to disparate levels of eIF4B overexpression.To address the physiological role of eIF4B in mRNA translation in the cell, RNAi knockdown of eIF4B was used here. We demonstrate that eIF4B is required for optimal translation. Importantly, the translation of mRNAs bearing structured 5′UTRs, such as the cell cycle regulators Cdc25C, c-myc, and ODC (ornithine decarboxylase), and the antiapoptotic factors Bcl-2 and XIAP (X-linked inhibitor of apoptosis), was reduced as a result of eIF4B silencing by RNAi. Furthermore, eIF4B silencing promoted caspase-dependent apoptosis. Thus, we show that mammalian eIF4B is required for cell proliferation and survival, whereby it acts by regulating the translation of a functionally related subset of mRNAs.  相似文献   

17.
The herpes simplex virus (HSV) virion host shutoff (Vhs) protein is an endoribonuclease that accelerates decay of many host and viral mRNAs. Purified Vhs does not distinguish mRNAs from nonmessenger RNAs and cuts target RNAs at many sites, yet within infected cells it is targeted to mRNAs and cleaves those mRNAs at preferred sites including, for some, regions of translation initiation. This targeting may result in part from Vhs binding to the translation initiation factor eIF4H; in particular, several mutations in Vhs that abrogate its binding to eIF4H also abolish its mRNA-degradative activity, even though the mutant proteins retain endonuclease activity. To further investigate the role of eIF4H in Vhs activity, HeLa cells were depleted of eIF4H or other proteins by transfection with small interfering RNAs (siRNAs) 48 h prior to infection or mock infection in the presence of actinomycin D. Cellular mRNA levels were then assayed 5 h after infection. In cells transfected with an siRNA for the housekeeping enzyme glyceraldehyde-3-phosphate dehydrogenase, wild-type HSV infection reduced beta-actin mRNA levels to between 20 and 30% of those in mock-infected cells, indicative of a normal Vhs activity. In contrast, in cells transfected with any of three eIF4H siRNAs, beta-actin mRNA levels were indistinguishable in infected and mock-infected cells, suggesting that eIF4H depletion impeded Vhs-mediated degradation. Depletion of the related factor eIF4B did not affect Vhs activity. The data suggest that eIF4H binding is required for Vhs-induced degradation of many mRNAs, perhaps by targeting Vhs to mRNAs and to preferred sites within mRNAs.  相似文献   

18.
mRNA translation is mainly regulated at the level of initiation, a process that involves the synergistic action of the 5' cap structure and the 3' poly(A) tail at the ends of eukaryotic mRNA. The eukaryote initiation factor 4G(eIF4G) is a pivotal scaffold protein that forms a critical link between mRNA cap structure, poly(A) tail, and the small ribosomal subunit. There are two functional homologs of eIF4G in mammals, the original eIF4G, renamed eIF4GI, and eIF4GII that functionally complements eIF4GI. To date, biochemical and functional analysis have not identified differential activities for eIF4GI and eIF4GII. In this report, we demonstrate that eIF4GII, but not eIF4GI, is selectively recruited to capped mRNA at the onset of cell differentiation. This recruitment is coincident with a strong and long-lasting phosphorylation of eIF4E and the release of 4E-BP1, a suppressor of eIF4E function, from the cap structure, without a concomitant change in 4E-BP1's phosphorylation. Our data further indicate that cytokines such as thrombopoietin can differentially regulate eIF4GI/II activities. These results provide the first evidence that eIF4GI/II does fulfill selective roles in mammalian cells.  相似文献   

19.
Translation of m7G-capped cellular mRNAs is initiated by recruitment of ribosomes to the 5' end of mRNAs via eukaryotic translation initiation factor 4F (eIF4F), a heterotrimeric complex comprised of a cap-binding subunit (eIF4E) and an RNA helicase (eIF4A) bridged by a scaffolding molecule (eIF4G). Internal translation initiation bypasses the requirement for the cap and eIF4E and occurs on viral and cellular mRNAs containing internal ribosomal entry sites (IRESs). Here we demonstrate that eIF4E availability plays a critical role in the switch from cap-dependent to IRES-mediated translation in picornavirus-infected cells. When both capped and IRES-containing mRNAs are present (as in intact cells or in vitro translation extracts), a decrease in the amount of eIF4E associated with the eIF4F complex elicits a striking increase in IRES-mediated viral mRNA translation. This effect is not observed in translation extracts depleted of capped mRNAs, indicating that capped mRNAs compete with IRES-containing mRNAs for translation. These data explain numerous reported observations where viral mRNAs are preferentially translated during infection.  相似文献   

20.
Translation efficiency of viral mRNAs is a key factor defining both cytopathogenicity and virulence of viruses, which are entirely dependent on the cellular translation machinery to synthesize their proteins. This dependence has led them to develop different translational reprogramming strategies to ensure viral mRNAs can effectively compete with cellular mRNAs. Junin virus (JUNV) is a member of the family Arenaviridae, whose mRNAs are capped but not polyadenylated. In this work we evaluated the relevance to JUNV replication of the main components of the eIF4F complex: eIF4A, eIF4GI and eIF4E. We found the viral nucleoprotein (N) of JUNV colocalized with eIF4A and eIF4GI but not with eIF4E. Moreover, N could be immunoprecipitated in association with eIF4A and eIF4GI but not with eIF4E. Accordingly, functional impairment of eIF4A as well as eIF4GI reduced JUNV multiplication. By contrast, inhibition of eIF4E did not show a significant effect on JUNV protein synthesis. A similar situation was observed for another two members of arenaviruses: Tacaribe (TCRV) and Pichinde (PICV) viruses. Finally, the nucleoproteins of JUNV, TCRV and PICV were able to interact with 7 methyl‐guanosine (cap), suggesting that the independence of JUNV multiplication on eIF4E, the cap‐binding protein, may be due to the replacement of this factor by N protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号