首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Although accumulating evidence demonstrates that white matter degeneration contributes to pathology in Alzheimer's disease (AD), the underlying mechanisms are unknown. In order to study the roles of the amyloid-beta peptide in inducing oxidative stress damage in white matter of AD, we investigated the effects of amyloid-beta peptide 25-35 (Abeta) on proinflammatory cytokine tumor necrosis factor-alpha (TNF-alpha)-induced inducible nitric oxide synthase (iNOS) in cultured oligodendrocytes (OLGs). Although Abeta 25-35 by itself had little effect on iNOS mRNA, protein, and nitrite production, it enhanced TNF-alpha-induced iNOS expression and nitrite generation in OLGs. Abeta, TNF-alpha, or the combination of both, increased neutral sphingomyelinase (nSMase) activity, but not acidic sphingomyelinase (aSMase) activity, leading to ceramide accumulation. Cell permeable C2-ceramide enhanced TNF-alpha-induced iNOS expression and nitrite generation. Moreover, the specific nSMase inhibitor, 3-O-methyl-sphingomyelin (3-OMS), inhibited iNOS expression and nitrite production induced by TNF-alpha or by the combination of TNF-alpha and Abeta. Overexpression of a truncated mutant of nSMase with a dominant negative function inhibited iNOS mRNA production. 3-OMS also inhibited nuclear factor kappaB (NF-kappaB) binding activity induced by TNF-alpha or by the combination of TNF-alpha and Abeta. These results suggest that neutral sphingomyelinase/ceramide pathway is required but may not be sufficient for iNOS expression induced by TNF-alpha and the combination of TNF-alpha and Abeta.  相似文献   

3.
The role of the second messenger ceramide in Fas-mediated death requires clarification. To address this issue, we generated hepatocytes from paired acid sphingomyelinase (ASMase; asmase)(+/+) and asmase(-/-) mice. asmase(-/-) hepatocytes, derived from 8-week-old mice, manifested normal sphingomyelin content and normal morphological, biochemical, and biologic features. Nonetheless, ASMase-deficient hepatocytes did not display rapid ceramide elevation or apoptosis in response to Jo2 anti-Fas antibody. asmase(-/-) hepatocytes were not inherently resistant to apoptosis because staurosporine, which did not induce early ceramide elevation, stimulated a normal apoptotic response. The addition of low nanomolar quantities of natural C16-ceramide, which by itself did not induce apoptosis, completely restored the apoptotic response to anti-Fas in asmase(-/-) hepatocytes. Other sphingolipids did not replace natural ceramide and restore Fas sensitivity. Overcoming resistance to Fas in asmase(-/-) hepatocytes by natural ceramide is evidence that it is the lack of ceramide and not ASMase which determines the apoptotic phenotype. The ability of natural ceramide to rescue the phenotype without reversing the genotype provides evidence that ceramide is obligate for Fas induction of apoptosis in hepatocytes.  相似文献   

4.
Docosahexaenoic acid (DHA) regulates the expression of cytochrome P450 2B1 (CYP 2B1) in rat primary hepatocytes in response to xenobiotics. Ceramide, a lipid signaling molecule, is involved in various physiological processes and can be generated by the hydrolysis of sphingomyelin via sphingomyelinase (SMase). DHA activates SMase and increases ceramide formation in vitro. Ceramides differentially enhance adenylyl cyclase activity in vitro depending on the chain length of their fatty acids. In addition, the cAMP-dependent PKA pathway down-regulates CYP 2B1 expression induced by phenobarbital (PB). In the present study, we determined the effect of DHA on SMase transactivation and the downstream pathway in CYP 2B1 expression induced by PB. SMase was activated by DHA 2 h after treatment, and D609 (an SMase inhibitor) attenuated the inhibition of PB-induced CYP 2B1 expression by DHA. Ceramide formation reached a maximum 3 h after DHA administration. C2-ceramide dose-dependently inhibited PB-induced CYP 2B1 expression and increased intracellular cAMP concentrations. SQ22536 (an adenylyl cyclase inhibitor) and H89 (a PKA-specific inhibitor) partially reversed the inhibition of PB-induced CYP 2B1 expression by C2-ceramide. These results suggest that stimulation of SMase, generation of ceramide and activation of the cAMP-dependent PKA pathway are involved in the inhibition exerted by DHA.  相似文献   

5.
Dopamine (DA) reuptake is the primary mechanism to terminate dopaminergic transmission in the synaptic cleft. The dopamine transporter (DAT) has an important role in the regulation of DA reuptake. This study provides anatomical and physiological evidence that DAT recycling is regulated by ceramide kinase via the sphingomyelin pathway. First, the results show that DAT and neutral sphingomyelinase 2 (nSMase2) were successfully co-precipitated from striatal samples and were colocalized in the mouse striatum or PC12 cells. We also identified a protein-protein interaction between nSMase2 and DAT through in situ proximity ligation assay experiments in the mouse striatum. Second, dopamine (DA) stimulated the formation of ceramide and increased nSMase activity in PC12 cells, while treatment with a cell-permeable ceramide-1-phosphate (C1P) increased DA uptake. Third, we used inhibitors and siRNA to inhibit nSMase2 and ceramide kinase and observed the effects on DAT recycling in PC12 cells. Treatment with ceramide kinase inhibitor K1, or nSMase inhibitor GW4869, decreased DA uptake in PC12 cells, although the application of FB1, a ceramide synthase inhibitor, did not affect DA uptake. Transfection of nSMase2 and CERK siRNA decreased DAT surface level in PC12 cells. These results suggested that SM-derived C1P affects cell surface levels of DAT.  相似文献   

6.
The mechanism of apoptosis induced by human galectin-1, a mammalian beta-galactoside-binding protein with a remarkable cytotoxic effect on activated peripheral T cells and tumor T cell lines has been extensively investigated in this study. Here we first show that galectin-1 initiate the acid sphingomyelinase mediated release of ceramide and this event is critical in the further steps. Elevation of ceramide level coincides with exposure of phosphatidylserine on the outer cell membrane. The downstream events, decrease of Bcl-2 protein amount, depolarization of the mitochondria and activation of the caspase 9 and caspase 3 depend on production of ceramide. All downstream steps, including production of ceramide, require the generation of membrane rafts and the presence of two tyrosine kinases, p56(lck) and ZAP70. Based on our findings we suggest a model of the mechanism of galectin-1 triggered cell death.  相似文献   

7.
Involvement of the acid sphingomyelinase pathway in uva-induced apoptosis   总被引:7,自引:0,他引:7  
The sphingomyelin-ceramide pathway is an evolutionarily conserved ubiquitous signal transduction system that regulates many cell functions including apoptosis. Sphingomyelin (SM) is hydrolyzed to ceramide by different sphingomyelinases. Ceramide serves as a second messenger in mediating cellular effects of cytokines and stress. In this study, we find that acid sphingomyelinase (SMase) activity was induced by UVA in normal JY lymphoblasts but was not detectable in MS1418 lymphoblasts from Niemann-Pick type D patients who have an inherited deficiency of acid SMase. We also provide evidence that UVA can induce apoptosis by activating acid SMase in normal JY cells. In contrast, UVA-induced apoptosis was inhibited in MS1418 cells. Exogenous SMase and its product, ceramide (10-40 micrometer), induced apoptosis in JY and MS1418 cells, but the substrate of SMase, SM (20-80 micrometer), induced apoptosis only in JY cells. These results suggest that UVA-induced apoptosis by SM is dependent on acid SMase activity. We also provide evidence that induction of apoptosis by UVA may occur through activation of JNKs via the acid SMase pathway.  相似文献   

8.
Platelet-activating factor (PAF) induces pulmonary edema and has a key role in acute lung injury (ALI). Here we show that PAF induces pulmonary edema through two mechanisms: acid sphingomyelinase (ASM)-dependent production of ceramide, and activation of the cyclooxygenase pathway. Agents that interfere with PAF-induced ceramide synthesis, such as steroids or the xanthogenate D609, attenuate pulmonary edema formation induced by PAF, endotoxin or acid instillation. Our results identify acid sphingomyelinase and ceramide as possible therapeutic targets in acute lung injury.  相似文献   

9.
Wilson disease is caused by accumulation of Cu(2+) in cells, which results in liver cirrhosis and, occasionally, anemia. Here, we show that Cu(2+) triggers hepatocyte apoptosis through activation of acid sphingomyelinase (Asm) and release of ceramide. Genetic deficiency or pharmacological inhibition of Asm prevented Cu(2+)-induced hepatocyte apoptosis and protected rats, genetically prone to develop Wilson disease, from acute hepatocyte death, liver failure and early death. Cu(2+) induced the secretion of activated Asm from leukocytes, leading to ceramide release in and phosphatidylserine exposure on erythrocytes, events also prevented by inhibition of Asm. Phosphatidylserine exposure resulted in immediate clearance of affected erythrocytes from the blood in mice. Accordingly, individuals with Wilson disease showed elevated plasma levels of Asm, and displayed a constitutive increase of ceramide- and phosphatidylserine-positive erythrocytes. Our data suggest a previously unidentified mechanism for liver cirrhosis and anemia in Wilson disease.  相似文献   

10.
To elucidate the interaction among the molecules which constitute intercellular lipids of stratum corneum, the phase diagrams in the binary mixtures of N-octadecanoyl-phytosphingosine (CER)/stearic acid (SA) and CER/cholesterol (CHOL) were studied by differential scanning calorimetry and by small- and wide-angle X-ray diffraction. These phase diagrams are mostly expressed by a eutectic type one. However, from their detailed analyses, it was revealed that in the phase diagram of CER/SA a new solid structure is formed just above the eutectic temperature. The lamellar spacing of the new structure is nearly equal to the length given by the sum of the two molecules of CER and/or SA, that is, in the lipid bilayer the hydrocarbon chains of CER and SA lie almost perpendicular to the lipid bilayer surface and the two kinds of molecules distribute homogeneously. On the other hand, in the binary mixture of CER/CHOL, CHOL molecules are apt to be isolated from the mixture. In a ternary mixture composed of equimolar lipids of CER, CHOL and SA, it was found that a pseudo-hexagonal structure takes place even in the solid state. This fact indicates that the three components are miscible and the hydrocarbon chains lie perpendicular to the lipid bilayer surface. We can draw the conclusion that the multi-component mixtures containing ceramide are apt to form the lamellar structure where even in the solid state the hydrocarbon chains lie perpendicular to the lipid bilayer surface and the components with hydrocarbon chains distribute homogeneously.  相似文献   

11.
12.
Acid sphingomyelinase (aSMase) generates the bioactive lipid ceramide (Cer) from hydrolysis of sphingomyelin (SM). However, its precise roles in regulating specific sphingolipid-mediated biological processes remain ill defined. Interestingly, the aSMase gene gives rise to two distinct enzymes, lysosomal sphingomyelinase (L-SMase) and secretory sphingomyelinase (S-SMase) via alternative trafficking of a shared protein precursor. Previously, our laboratory identified Ser(508) as a crucial residue for the constitutive and regulated secretion of S-SMase in response to inflammatory cytokines, and demonstrated a role for S-SMase in formation of select cellular Cer species (Jenkins, R. W., Canals, D., Idkowiak-Baldys, J., Simbari, F., Roddy, P., Perry, D. M., Kitatani, K., Luberto, C., and Hannun, Y. A. (2010) J. Biol. Chem. 285, 35706-35718). In the present study using a chemokine/cytokine screen, we identified the chemokine CCL5 (formerly known as RANTES) as a candidate-specific downstream target for aSMase. Regulation of CCL5 by aSMase was subsequently validated using both loss-of-function and gain-of-function models indicating that aSMase is both necessary and sufficient for CCL5 production. Interestingly, cells deficient in acid ceramidase (aCDase) also exhibited defects in CCL5 induction, whereas cells deficient in sphingosine kinase-1 and -2 exhibited higher levels of CCL5, suggesting that sphingosine and not sphingosine 1-phosphate (S1P) is responsible for the positive signal to CCL5. Consistent with this, co-expression of aSMase and aCDase was sufficient to strongly induce CCL5. Taken together, these data identify a novel role for aSMase (particularly S-SMase) in chemokine elaboration by pro-inflammatory cytokines and highlight a novel and shared function for aSMase and aCDase.  相似文献   

13.
A phospholipase C/sphingomyelinase from Pseudomonas aeruginosa has been assayed on vesicles containing phosphatidylcholine, sphingomyelin, phosphatidylethanolamine and cholesterol at equimolar ratios. The enzyme activity modifies the bilayer chemical composition giving rise to diacylglycerol (DAG) and ceramide (Cer). Assays of enzyme activity, enzyme-induced aggregation and fusion have been performed. Ultrastructural evidence of vesicle fusion at various stages of the process is presented, based on cryo-EM observations. The two enzyme lipidic end-products, DAG and Cer, have opposite effects on the bilayer physical properties; the former abolishes lateral phase separation, while the latter generates a new gel phase [Sot et al., FEBS Lett. 582, 3230-3236 (2008)]. Addition of either DAG, or Cer, or both to the liposome mixture causes an increase in enzyme binding to the bilayers and a decrease in lag time of hydrolysis. These two lipids also have different effects on the enzyme activity, DAG enhancing enzyme-induced vesicle aggregation and fusion, Cer inhibiting the hydrolytic activity. These effects are explained in terms of the different physical properties of the two lipids. DAG increases bilayers fluidity and decreases lateral separation of lipids, thus increasing enzyme activity and substrate accessibility to the enzyme. Cer has the opposite effect mainly because of its tendency to sequester sphingomyelin, an enzyme substrate, into rigid domains, presumably less accessible to the enzyme.  相似文献   

14.
The vascular endothelium acutely autoregulates blood flow in vivo in part through unknown mechanosensing mechanisms. Here, we report the discovery of a new acute mechanotransduction pathway. Hemodynamic stressors from increased vascular flow and pressure in situ rapidly and transiently induce the activity of neutral sphingomyelinase but not that acid sphingomyelinase in a time- and flow rate-dependent manner, followed by the generation of ceramides. This acute mechanoactivation occurs directly at the luminal endothelial cell surface primarily in caveolae enriched in sphingomyelin and neutral sphingomyelinase, but not acid sphingomyelinase. Scyphostatin, which specifically blocks neutral but not acid sphingomyelinase, inhibits mechano-induced neutral sphingomyelinase activity as well as downstream activation of extracellular signal-regulated kinase 1 and 2 (ERK1 and ERK2) by increased flow in situ. We postulate a novel physiological function for neutral sphingomyelinase as a new mechanosensor initiating the ERK cascade and possibly other mechanotransduction pathways.  相似文献   

15.
16.
We explored the action of sphingomyelinase (SMase) on ternary monolayers containing phosphatidylcholine, sphingomyelin (SM) and dihydrocholesterol, which varied along a single tie line of phase coexistence. SMase activity exhibited a higher rate and extent of hydrolysis when the film is within the liquid-expanded (LE)/liquid-ordered (LO) coexistence range, compared to monolayers in the full LO phase. Since Alexa-SMase preferably adsorbs to the LE phase and there was no direct correlation found between enzymatic activity and domain borders, we postulate that the LE phase is the active phase for ceramide (Cer) generation. The enzymatically generated Cer was organized in different ways depending on the initial LE/LO ratio. The action of SMase in Chol-poor monolayers led to the formation of Cer-enriched domains, while in Chol-rich monolayers it resulted in the incorporation of Cer in the LO phase and the formation of new Chol- and Cer-enriched domains. The following novel mechanism is proposed to provide an explanation for the favored action of SMase on interfaces that exhibit an LE-LO phase coexistence: the LO phase sequesters the product Cer causing its depletion from the more enzyme-susceptible LE phase, thus decreasing inhibition by the reaction product. Furthermore, LO domains function as a substrate reservoir by allowing a rapid exchange of the substrate from this phase to the SM-depleted LE phase.  相似文献   

17.
In this study, we determined whether minocycline may protect rat cortical cultures against neurotoxicity induced by sphingomyelinase/ceramide and explored the underlying mechanisms. We found that minocycline exerted strong neuroprotective effects against toxicity induced by bacterial sphingomyelinase and synthetic C2 ceramide. Minocycline enhanced the production of nitric oxide (NO) with resultant increases in cellular cGMP content. Consistently, minocycline-dependent neuroprotection was abolished by the nitric oxide synthase inhibitor L-N(G)-nitroarginine methyl ester (L-NAME) and the soluble guanylate cyclase (sGC) inhibitor 1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one (ODQ). Western blotting revealed that minocycline restored the expression levels of cGMP-dependent protein kinase (PKG)-1, antioxidative thioredoxin-1, and antiapoptotic Bcl-2 that were down-regulated by bacterial sphingomyelinase. Accordingly, the PKG inhibitor KT5823, the thioredoxin reductase inhibitor 1-chloro-2,4-dinitrobenzene (DNCB), and a Bcl-2 inhibitor significantly abolished the minocycline neuroprotection. The minocycline-dependent restoration of Bcl-2 was abolished by L-NAME, ODQ, and KT5823, but not by DNCB, suggesting the involvement of NO/sGC/PKG but not thioredoxin. Furthermore, minocycline-dependent recovery of thioredoxin-1 was PKG-independent. Taken together, our results indicate that minocycline protects rat cortical neurons against bacterial sphingomyelinase/ceramide toxicity via an NO/cGMP/PKG pathway with induction of Bcl-2 and PKG-independent stimulation of thioredoxin-1.  相似文献   

18.
Sindbis virus (SV) causes acute encephalomyelitis by infecting and inducing the death of neurons. Induction of apoptosis occurs during virus entry and involves acid-induced conformational changes in the viral surface glycoproteins and sphingomyelin (SM)-dependent fusion of the virus envelope with the endosomal membrane. We have studied neuroblastoma cells to determine how this entry process triggers cell death. Acidic sphingomyelinase was activated during entry followed by activation of neutral sphingomyelinase, SM degradation, and a sustained increase in ceramide. Ceramide-induced apoptosis and SV-induced apoptosis could be inhibited by treatment with Z-VAD-fmk, a caspase inhibitor, and by overexpression of Bcl-2, an antiapoptotic cellular protein. Acid ceramidase, expressed in a recombinant SV, decreased intracellular ceramide and protected cells from apoptosis. The data suggest that acid-induced SM-dependent virus fusion initiates the apoptotic cascade by inducing SM degradation and ceramide release.  相似文献   

19.
Several categories of chemotherapy confer substantial risk for late-term vascular morbidity and mortality. In the present study, we aimed to investigate the mechanism of acute chemotherapy-induced vascular injury in normal tissues. Specifically, we looked at activation of the acid sphingomyelinase (ASMase)/ceramide pathway, which leads to generation of reactive oxygen species (ROS) and induction of oxidative stress that may result in vascular injury.In particular, we focused on two distinct drugs, doxorubicin (DOX) and cisplatin (CIS) and their effects on normal endothelial cells. In vitro, DOX resulted in increased ASMase activity, intra-cellular ROS production and induction of apoptosis. CIS treatment generated significantly reduced effects in endothelial cells. In-vivo, murine femoral arterial blood flow was measured in real-time, during and after DOX or CIS administration, using fluorescence optical imaging system. While DOX caused constriction of small vessels and disintegration of large vessels' wall, CIS induced minor vascular changes in arterial blood flow, correlating with the in vitro findings. These results demonstrate that DOX induces acute vascular injury by increased ROS production, via activation of ASMase/ceramide pathway, while CIS increases ROS production and its immediate extracellular translocation, without causing detectable acute vascular injury. Our findings may potentially lead to the development of new strategies to prevent long-term cardiovascular morbidity in cancer survivors.  相似文献   

20.
Metabolic engineering to enhance production of isoprenoid metabolites for industrial and medical purposes is an important goal. The substrate for isoprenoid synthesis in plants is produced by the mevalonate pathway (MEV) in the cytosol and by the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway in plastids. A multi-gene approach was employed to insert the entire cytosolic MEV pathway into the tobacco chloroplast genome. Molecular analysis confirmed the site-specific insertion of seven transgenes and homoplasmy. Functionality was demonstrated by unimpeded growth on fosmidomycin, which specifically inhibits the MEP pathway. Transplastomic plants containing the MEV pathway genes accumulated higher levels of mevalonate, carotenoids, squalene, sterols, and triacyglycerols than control plants. This is the first time an entire eukaryotic pathway with six enzymes has been transplastomically expressed in plants. Thus, we have developed an important tool to redirect metabolic fluxes in the isoprenoid biosynthesis pathway and a viable multigene strategy for engineering metabolism in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号