首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The amount and the dynamics of antigen supply to the cellular antigen processing and presentation machinery differ largely among diverse microbial antigens and various types of antigen presenting cells. The precise influence, however, of antigen supply on the antigen presentation pattern of cells is not known. Here, we provide a basic deterministic mathematical model of antigen processing and presentation of microbial antigens. The model predicts that different types of antigen presenting cells e.g. cells presenting or cross-presenting exogenous antigens, cells infected with replicating microbes, or cells in which microbial antigen synthesis is blocked after a certain period of time have inherently different antigen presentation patterns which are defined by the kinetics of antigen supply. The reevaluation of existing experimental data [Sijts, A.J., Pamer, E.G., 1997. Enhanced intracellular dissociation of major histocompatibility complex class I-associated peptides: a mechanism for optimizing the spectrum of cell surface-presented cytotoxic T lymphocyte epitopes. J. Exp. Med. 185, 1403-1411] describing the processing and presentation of two antigenic peptides derived from the p60 proteins of the facultatively intracellular bacterium Listeria monocytogenes shows that p60 proteins accumulating intracellularly during bacterial infection of cells play no measurable role as substrate for the cytosolic antigen presentation pathway.  相似文献   

2.
Current treatment of T cell mediated autoimmune diseases relies mostly on strategies of global immunosuppression, which, in the long term, is accompanied by adverse side effects such as a reduced ability to control infections or malignancies. Therefore, new approaches need to be developed that target only the disease mediating cells and leave the remaining immune system intact. Over the past decade a variety of cell based immunotherapy strategies to modulate T cell mediated immune responses have been developed. Most of these approaches rely on tolerance-inducing antigen presenting cells (APC). However, in addition to being technically difficult and cumbersome, such cell-based approaches are highly sensitive to cytotoxic T cell responses, which limits their therapeutic capacity. Here we present a protocol for the generation of non-cellular killer artificial antigen presenting cells (KaAPC), which allows for the depletion of pathologic T cells while leaving the remaining immune system untouched and functional. KaAPC is an alternative solution to cellular immunotherapy which has potential for treating autoimmune diseases and allograft rejections by regulating undesirable T cell responses in an antigen specific fashion.  相似文献   

3.
Abstract Pregnant A/J mice were found to be more susceptible to the lethal effect of Listeria monocytogenes bacteria than virgin females. However, during the first four days of post-infection there was no difference in the elimination of Listeria from the spleens of pregnant and virgin mice. This suggests that the increase in the susceptibility of pregnant mice to pathogenic activity of L. monocytogenes was related to the diminution in Listeria -specific cellular reactions. Indeed, we found that non-adherent light density dendritic cells (DCs) from pregnant mice showed a marked reduction in the ability to form clusters with L. monocytogenes immune T lymphocytes and it is known that cell cluster formation between antigen presenting cells (APC) and responding T cells is required for antigen recognition as well as for cell proliferation. DCs from pregnant mice also demonstrated the decrease and an instability in the expression of H-2 class II molecules which play a crucial role in the recognition of exogenous antigens. The abnormalities demonstrated in the function of the light density dendritic cells from the spleens of pregnant mice could compromise cellular reactions to L. monocytogenes bacteria possibly resulting in increased susceptibility of pregnant mice to experimental listeriosis.  相似文献   

4.
T lymphocytes are characterized by the use of structurally diverse TCR. The discovery of subsets of canonical T cells that have structurally homogeneous TCR presents an enigma: What antigens do these T cells recognize, and how does their antigen specificity relate to their functions? One subset of canonical T cells is restricted by CD1d, a non-classical antigen presenting molecule that presents lipids and glycolipids. Canonical CD1d-restricted T cells have semi-invariant TCR consisting of an invariantly rearranged TCR alpha chain, paired with diversely rearranged TCR beta chains. Most respond strongly to the unusual glycolipid alpha-galactosylceramide (alpha-GalCer), and can also respond to cellular antigens presented by CD1d. Mounting evidence indicates that alpha-GalCer responsive T cells are heterogeneous in their reactivities to cellular antigens, suggesting that an individual semi-invariant TCR may be capable of recognizing more than one ligand. Recent crystal structures of CD1b molecules with three different bound lipids indicate that the antigenic features of lipids may be localized over a smaller area than those of peptides, and that the positioning of the polar head group can vary substantially. A model that explains how CD1d-restricted T cells could possess both conserved and heterogeneous antigen specificities, is that different lipid antigens may interact with distinct areas of a TCR due to differences in the positioning of the polar head group. Hence, canonical CD1d-restricted TCR could recognize conserved antigens via the invariant TCR alpha chain, and have diverse antigen specificities that are conferred by their individual TCR beta chains.  相似文献   

5.
When activated, CD4+ T cells differentiate into two major sub‐populations differing in their profiles of secreted cytokines. Type One, or TH1, cells secrete IL‐2, IFNγ, and TNFβ and mediate a cellular immune response. Type Two, or TH2, cells secrete IL‐4, IL‐5, IL‐6, IL‐10, and IL‐13 and potentiate a humoral response. The nature of any specific immune response depends on the interaction of antigen‐presenting cells and T cells. The role of antigen‐presenting cells is to respond to the nature of the immune challenge and signal differentiation of CD4+ T cells. A number of factors are involved in the effector phenotype of T cells—nature and affinity of antigen, co‐receptors signals, and cytokine environment. T‐cell differentiation is a complex process comprising four defined developmental stages: activation of particular cytokine genes, commitment of the cells, silencing of the opposing cytokine genes, and stabilization of the phenotype. In each of these stages, the cells respond to the products of many signaling cascades from many membrane‐bound receptors. The stages in development are mediated by different molecular mechanisms, involving control of gene expression and chromatin remodeling. This review centers on the factors, cellular interactions, and molecular mechanisms involved in the maturation of naïve CD4+ T lymphocytes into fully effector cells. © 2003 Wiley‐Liss, Inc.  相似文献   

6.
Heat shock proteins (HSPs) have been described as potent tumor vaccines in animal models and are currently studied in clinical trials. The underlying immune response relies on immunogenic peptides that the HSPs have acquired intracellularly by interfering with the classical antigen processing pathways. There have been numerous reports shedding light on how HSPs are able to gain this function and a number of important requirements for HSP-mediated specific immunity have been described: first, the ability of HSPs to bind immunogenic peptides. Second, the acquisition of HSPs by specialized antigen presenting cells with efficient antigen processing pathways capable of inducing cellular immune responses. Third, the existence of specific receptors on the surfaces of antigen presenting cells, allowing efficient and rapid uptake of HSP-peptide complexes from the extracellular fluid. And fourth, the ability of heat shock proteins to activate antigen presenting cells, enabling the latter to prime cytotoxic T cell responses against the peptides associated to HSPs.  相似文献   

7.
Dynamic subcellular distributions of signaling system components are critical regulators of cellular signal transduction through their control of molecular interactions. Understanding how signaling activity depends on such distributions and the cellular structures driving them is required for comprehensive insight into signal transduction. In the activation of primary murine T cells by antigen presenting cells (APC) signaling intermediates associate with various subcellular structures, prominently a transient, wide, and actin-associated lamellum extending from an interdigitated T cell:APC interface several micrometers into the T cell. While actin dynamics are well established as general regulators of cellular organization, their role in controlling signaling organization in primary T cell:APC couples and the specific cellular structures driving it is unresolved. Using modest interference with actin dynamics with a low concentration of Jasplakinolide as corroborated by costimulation blockade we show that T cell actin preferentially controls lamellal signaling localization and activity leading downstream to calcium signaling. Lamellal localization repeatedly related to efficient T cell function. This suggests that the transient lamellal actin matrix regulates T cell signaling associations that facilitate T cell activation.  相似文献   

8.
The cellular and molecular characteristics of anti-idiotype-induced suppression have been investigated. We have shown that i.v. immunization of A/J or C.AL-20 mice with rabbit antibodies against the major cross-reactive idiotype on A/J anti-ABA antibodies induces splenic suppressor T cells (Ts) able to suppress T cell-mediated cytolytic and delayed-type hypersensitivity responses to ABA. In these studies, we compare the T suppressor activity manifested by anti-Id-induced suppressor cells with that described previously after conventional antigen priming. Results indicate that i.v. injection of anti-idiotypic antibodies primes for efferent level Ts; in contrast, i.v. administration of ABA-coupled cells induces afferent level suppressor cells. Soluble cell lysates, containing suppressor factor(s) derived from these anti-idiotype-induced Ts, can also mediate suppression of T cell immune responses in an efferent manner. Factor-mediated suppression is MHC-unrestricted and is also observed in mice pretreated with cyclophosphamide, suggesting that this activity is analogous to third-order suppression. Furthermore, this factor suppresses the T cell-mediated DTH and CTL responses in an antigen-nonspecific but Igh-restricted manner. These latter results suggest that the cellular elements conferring antigen specificity and Igh restriction are separate. The implications of these findings to the relationship between idiotypic elements, antigen-binding structures, and Igh restriction elements on immunoregulatory T cells are discussed.  相似文献   

9.
B Stockinger  U Pessara  R H Lin  J Habicht  M Grez  N Koch 《Cell》1989,56(4):683-689
Most native antigens require processing in a cellular compartment for efficient presentation to T helper cells. The cellular elements that permit processing are not known. We investigated a possible role of the class II MHC-associated invariant chains in antigen processing. Fibroblast cells that were transfected with class II genes were compared with fibroblasts supertransfected with the invariant chain gene for their capacity to present the fifth component of complement (C5) to C5-specific class II restricted T cell clones or influenza virus protein to a virus-specific T cell clone. Only fibroblasts supertransfected with the invariant chain gene were able to present native antigen, even at very low antigen concentration, whereas both fibroblast types could present cyanogen bromide-fragmented C5 or the virus peptide. Presentation of intact antigen but not of fragmented antigen was totally abrogated by treatment of fibroblasts with chloroquine. The invariant chain gene encodes two polypeptides, li31 and li41. Expression of either li31 or li41 was sufficient to render class II-expressing fibroblasts capable of presenting intact antigen.  相似文献   

10.
Nieda M  Tomiyama M  Egawa K 《Human cell》2003,16(4):199-204
Dendritic cells (DCs) are potent antigen presenting cells that are able to initiate and modulate immune responses and are hence exploited as cellular vaccines for immunotherapy. In particular DCs generated from peripheral blood monocytes (Mo-DCs) have been used with promising results as a new approach for the immunotherapy of cancer. In this study, we have analyzed the changes in the pattern of expression molecules on Mo-DCs during DC maturation using different maturation cytokine combinations and the expansion capacity of an antigen specific CD8+T cells monitored by flow cytometry with the fluorescent tetramers and anti-CD8 monoclonal antibody. These analyses revealed that the expansion of antigen specific CD8+T cells is the most effective when T cells were activated by fully maturated DCs by culturing monocytes for 5 days in the presence of GM-CSF and IL-4, followed by 2-3 days of maturation with pro-inflammatory mediators including TNFalpha, IL-6, IL-1beta and PGE2. These results pave the way to a more effective immunotherapy using DCs for patients with malignancy, as well as infectious diseases.  相似文献   

11.
CD54 is a surrogate marker of antigen presenting cell activation   总被引:1,自引:0,他引:1  
There is no single universally accepted hallmark of antigen presenting cell (APC) activation. Instead a variety of methods are used to identify APCs and assess their activation state. These activation measures include phenotypic methods [e.g., assessing the increased expression of surface markers such as major histocompatability (MHC) class II] and functional assays (e.g., evaluating the enhanced ability to take up and process antigen, or stimulate naïve T cells). Sipuleucel-T is an investigational autologous active cellular immunotherapy product designed to stimulate a T cell immune response against human prostatic acid phosphatase (PAP), an antigen highly expressed in prostate tissue. Sipuleucel-T consists of peripheral blood mononuclear cells (PBMCs), including activated APCs displaying epitopes of PAP. In order to develop a robust reproducible potency assay that is not hampered by MHC restriction we have developed a method to simply assess the biological activation of antigen presenting cells (APCs). In the course of sipuleucel-T characterization, we analyzed various phenotypic and functional parameters to define the activation state of APCs obtained from peripheral blood. Flow cytometric assays revealed that CD54+ cells are responsible for antigen uptake, and that expression of CD54 predominantly localizes to APCs. Costimulation, as measured by an allogeneic mixed lymphocytic reaction (alloMLR) assay, showed that activity was restricted to the CD54+ cell population. Similarly, CD54+ cells harbor all of the PAP-specific antigen presentation activity, as assayed using a PAP-specific HLA-DRβ1-restricted T cell hybridoma. Finally we show that CD54 expression is substantially and consistently upregulated on APCs during culture with a GM-CSF fusion protein, and that this upregulation activity can be quantified. Thus these data support the use of CD54 upregulation as a surrogate for assessing human APC activation and validates its utility as a potency measure of sipuleucel-T.  相似文献   

12.
13.
An in vitro method for the generation of effector suppressor cells (Ts3) was developed. By utilizing this protocol, it was possible to investigate both the cellular and genetic requirements for suppressor cell induction. It was determined that populations containing Ts3 cells can be induced after a 4-day culture of spleen cells and antigen. These Ts3 cells are similar to Ts3 cells generated by in vivo immunization. Both populations are I-J+, bind NP hapten, bind NP hapten, bear receptors which share NPb idiotypic determinants with anti-NP antibodies, function during the effector phase of the immune response, and require activation with Ts2 cells. Generation of Ts3-containing populations required both nylon wool-nonadherent T cells and a nylon-adherent, B cell-enriched population from an Igh-identical donor. T cells cultured with antigen alone or with syngeneic macrophages and antigen did not develop suppressive activity. Lytic treatment of the nylon-adherent population with a B cell-specific monoclonal antibody (J11d) removed the ability to generate suppressor cells. These results imply that the induction of suppressor T cells requires B lymphocytes, and that this induction process is dependent on Igh-linked gene products.  相似文献   

14.
We have provided evidence to demonstrate that hapten-specific killer cells can be generated in vivo toward hapten-conjugated syngeneic splenic cells. The critical aspect is to provide an auxillary cellular antigenic stimulus in addition to the hapten-conjugated syngeneic cells. In our experiments this stimulus was CBA/J splenic cells that possess MIs disparate but H-2 compatible antigens with C3H/HeN hosts. The Mls antigen has been shown by others to activate helper T cells in vitro to synthesize KAF, a signal that prekiller cells require besides target antigen. Killer cells (shown to be T cells) as well as helper T cells were found to be derived from the C3H host. Induction in the host animal of partial tolerance to the auxiliary cells possessing Mls antigen abrogated the response. This system, besides providing a better understanding of the control mechanisms involved in the development of T killer cells in vivo, points to a way in which the latter may be generated-ng suppressor cells. The latter principle may prove highly useful in certain clinical situations.  相似文献   

15.
T cells play an indispensable role in immune defense against infectious agents, but can also be pathogenic. These T cells develop in the thymus, are exported into the periphery as naïve cells and participate in immune responses. Upon recognition of antigen, they are activated and differentiate into effector and memory T cells. While effector T cells carry out the function of the immune response, memory T cells can last up to the life time of the individual, and are activated by subsequent antigenic exposure. Throughout this life cycle, the T cell uses the same receptor for antigen, the T cell Receptor, a complex multi-subunit receptor. Recognition of antigen presented by peptide/MHC complexes on antigen presenting cells unleashes signaling pathways that control T cell activation at each stage. In this review, we discuss the signals regulated by the T cell receptor in naïve and effector/memory T cells.  相似文献   

16.
Giri PK  Schorey JS 《PloS one》2008,3(6):e2461
Activation of both CD4(+) and CD8(+) T cells is required for an effective immune response to an M. tuberculosis infection. However, infected macrophages are poor antigen presenting cells and may be spatially separated from recruited T cells, thus limiting antigen presentation within a granuloma. Our previous studies showed that infected macrophages release from cells small membrane-bound vesicles called exosomes which contain mycobacterial lipid components and showed that these exosomes could stimulate a pro-inflammatory response in na?ve macrophages. In the present study we demonstrate that exosomes stimulate both CD4(+) and CD8(+) splenic T cells isolated from mycobacteria-sensitized mice. Although the exosomes contain MHC I and II as well as costimulatory molecules, maximum stimulation of T cells required prior incubation of exosomes with antigen presenting cells. Exosomes isolated from M. bovis and M. tuberculosis infected macrophages also stimulated activation and maturation of mouse bone marrow-derived dendritic cells. Interestingly, intranasal administration of mice with exosomes isolated from M. bovis BCG infected macrophages induce the generation of memory CD4(+) and CD8(+) T cells. The isolated T cells also produced IFN-gamma upon restimulation with BCG antigens. The release of exosomes from infected macrophages may overcome some of the defects in antigen presentation associated with mycobacterial infections and we suggest that exosomes may be a promising M. tuberculosis vaccine candidate.  相似文献   

17.
Cellular signaling transduction critically depends on molecular interactions that are in turn governed by dynamic subcellular distributions of the signaling system components. Comprehensive insight into signal transduction requires an understanding of such distributions and cellular structures driving them. To investigate the activation of primary murine T cells by antigen presenting cells (APC) we have imaged more than 60 signaling intermediates during T cell stimulation with microscopy across resolution limits. A substantial number of signaling intermediates associated with a transient, wide, and actin-associated lamellum extending from an interdigitated T cell:APC interface several micrometers into the T cell, as characterized in detail here. By mapping the more than 60 signaling intermediates onto the spatiotemporal features of cell biological structures, the lamellum and other ones previously described, we also define distinct spatial and temporal characteristics of T cell signal initiation, amplification, and core signaling in the activation of primary T cells by APCs. These characteristics differ substantially from ones seen when T cells are activated using common reductionist approaches.  相似文献   

18.
The accessory cell requirements for a given T cell response may be examined in vitro by using highly purified lymph node T cells. We have examined the capacity of different antigen-presenting cells to stimulate proliferation of Mycobacterium tuberculosis-primed T cells when the antigenic challenge is either soluble or particulate in nature. By titrations of cell number and antigen concentration, it was shown that dendritic cells are not only extremely efficient at presenting soluble mycobacterial antigen compared with various macrophage populations, but also that they are capable of presenting whole mycobacteria. Because phagocytosis of mycobacteria does not occur with these cells, we suggest that processing of antigen by dendritic cells may be initiated at the plasma membrane. Because macrophages are not essential for this in vitro response, a role for dendritic cells in antibacterial immunity in vivo is implicated.  相似文献   

19.
20.
恒定自然杀伤T细胞(iNKT)是T淋巴细胞的一个独特亚群,兼具自然杀伤(NK)细胞和T细胞特征,同时表达T细胞受体(TCR)和NK细胞表面标志。iNKT细胞被激活后,通过分泌细胞因子,活化其它免疫细胞参与先天性免疫和获得性免疫,在抗肿瘤免疫过程中发挥调节作用。在多种癌症患者体内,发现外周血中iNKT细胞的数量降低、功能减弱,进而导致临床治疗效果不佳。近年来,基础研究和早期临床试验结果表明,注射抗原递呈细胞或/和体外培养并活化的iNKT细胞,抗肿瘤免疫治疗效果显著。本文就iNKT细胞的分类及生物学特性,在肿瘤免疫治疗中的作用与其机制,以及其临床应用等进行综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号